4 research outputs found

    Sinteza i biološko djelovanje novih 1-benzil i 1-benzoil 3-heterocikličkih derivata indola

    Get PDF
    Starting from 1-benzyl- (2a) and 1-benzoyl-3-bromoacetyl indoles (2b) new heterocyclic, 2-thioxoimidazolidine (4a,b), imidazolidine-2,4-dione (5a,b), pyrano(2,3-d)imidazole (8a,b and 9a,b), 2-substituted quinoxaline (11a,b–17a,b) and triazolo(4,3-a)quinoxaline derivatives (18a,b and 19a,b) were synthesized and evaluated for their antimicrobial and anticancer activities. Antimicrobial activity screening performed with concentrations of 0.88, 0.44 and 0.22 g mm2 showed that 3-(1-substituted indol-3-yl)quinoxalin-2(1H)ones (11a,b) and 2-(4-methyl piperazin-1-yl)-3-(1-substituted indol-3-yl) quinoxalines (15a,b) were the most active of all the tested compounds towards P. aeruginosa, B. cereus and S. aureus compared to the reference drugs cefotaxime and piperacillin, while 2-chloro-3-(1-substituted indol-3-yl)quinoxalines (12a,b) were the most active against C. albicans compared to the reference drug nystatin. On the other hand, 2-chloro-3-(1-benzyl indol-3-yl) quinoxaline (12a) display potent efficacy against ovarian cancer xenografts in nude mice with tumor growth suppression of 100 0.3 %.U radu je opisana sinteza, antimikrobno i antitumorsko djelovanje heterocikličkih derivata indola. Polazeći iz 1-benzil- i 1-benzoil-3-bromacetil indola (2a i 2b) sintetizirani su novi heterociklički spojevi 2-tioksoimidazolidini (4a,b), imidazolidin-2,4-dioni (5a,b), pirano(2,3-d)imidazoli (8a,b i 9a,b), 2-supstituirani kinoksalini (11a,b–17a,b) i triazolo(4,3-a)kinoksalini (18a,b i 19a,b). Sintetizirani spojevi testirani su na antimikrobno i antitumorsko djelovanje. Ispitivanje antimikrobnog djelovanja provedeno je s koncentracijama otopina 0,88, 0,44 i 0,22 g mm2 i uspoređeno s referentnim lijekovima cefotaksimom i piperacilinom. Rezultati pokazuju da su 3-(1-supstituirani indol-3-il)kinoksalin-2(1H)oni (11a,b) i 2-(4-metil piperazin-1-il)-3-(1-supstituirani indol-3-il) kinoksalini (15a,b) najaktivniji spojevi na sojeve P. aeruginosa, B. cereus i S. aureus, dok su 2-klor-3-(1-supstituirani indol-3-il)kinoksalini (12a,b) najaktivniji na C. albicans (usporedba s nistatinom). Osim toga, 2-klor-3-(1-benzil indol-3-il) kinoksalin (12a) pokazuje veliku učinkovitost na tumore ovarija miševa (supresija rasta tumora 100 0,3 %)

    Design, Synthesis, Anticancer Evaluation and Docking Studies of Novel Heterocyclic Derivatives Obtained via Reactions Involving Curcumin

    No full text
    Curcumin, a widely utilized flavor and coloring agent in food, has been shown to demonstrate powerful antioxidant, antitumor promoting and anti-inflammatory properties in vitro and in vivo. In the present work, synthesis of new heterocyclic derivatives based on Curcumin was studied. Compound 3 was synthesized via the reaction of furochromone carbaldehyde (1) with Curcumin (2) using pipredine as catalyst. Also, novel, 4,9-dimethoxy-5H-furo [3, 2-g] chromen-5-one derivatives 4a–d, 6a–d, 7, 8a–d, 9 and 10 were synthesized by the reactions of furochromone carbaldehyde (1) with different reagents (namely: appropriate amine 3a–d, appropriate hydrazine 5a–d, hydroxylamine hydrochloride, urea/thiourea, malononitrile, malononitrile with hydrazine hydrate). The structure of the synthesized products had been confirmed from their spectroscopic data (IR, 1H-NMR, 13C-NMR and mass spectra). In the present investigation, the newly synthesized products were screened using the MTT colorimetric assay for their in vitro inhibition capacity in two human cancer cell lines (hepatocellular carcinoma (HEPG2) and breast cancer (MCF-7) as well as the normal cell line (human normal melanocyte, HFB4) in comparison to the known anticancer drugs: 5-flurouracil and doxorubicin. The anticancer activity results indicated that the synthesized products 4c and 8b showed growth inhibition activity against HEPG2 cell line and synthesized products 4b and 8a showed growth inhibition activity against MCF-7, but with varying intensities in comparison to the known anticancer drugs, 5-flurouracil and doxorubicin. Cyclin dependent kinase 2 (CDK2), a major cell cycle protein, was identified as a potential molecular target of Curcumin. Furthermore, Curcumin induced G1 cell cycle arrest, which is regulated by CDK2 in cancer cells. Therefore, we used molecular modelling to study in silico the possible inhibitory effect of CDK2 by Curcumin derivatives as a possible mechanism of these compounds as anticancer agents. The molecular docking study revealed that compounds 4b, 8a and 8b were the most effective compounds in inhibiting CDk2, and, this result was in agreement with cytotoxicity assay
    corecore