5 research outputs found

    The occurrence of disinfectant and antibiotic-resistant genes in Escherichia coli isolated from chickens in Egypt

    Get PDF
    Aim: This work aimed to determine the occurrence of antibiotic and disinfectant resistance genes in Escherichia coli isolated from chickens in Egypt. Materials and Methods: Organs (liver, lung, heart, yolk sac, and bone marrow) of 1500 chicken samples were collected from diseased chickens suffered from colibacillosis with PM findings as CRD, diarrhea and omphalitis from different governorates of Egypt as: Giza, EL-Bahira, Fayoum, El-Dakahlia, El-Ismalia, and El-Sharkia during 2015-2016. These samples were labeled and transported immediately on ice to the Reference laboratory for quality control on poultry production (RLQP). The samples were cultured onto MacConkey agar and Eosin Methylene Blue Agar. Isolation and identification of the E. coli were performed based on morphology, cultural, staining, and biochemical properties. Antimicrobial resistance test was carried out using disk diffusion method. The PCR employing tetA, qacED1 and qacA/B were carried out for detection of these genes in isolated E.coli. Results: The prevalence of E. coli in chicken was 34%. Predominant serotypes of E. coli which serologically identified were O128, O111, O44, O158, and O2. Antibiotic susceptibility test of E. coli revealed that 100% of isolates were resistant to ampicillin, erythromycin, and sulfamethoxazole-trimethoprim, while 73.53% and 38.23% of them were sensitive for colistin sulfate and levofloxacin, respectively. Antibiotic resistance genes as tetA gene were tested for isolated E. coli and detected by incidence rate of 91.18%. qac resistance genes resembling as qacED1 and qacA/B genes were detected in isolated E. coli 70.6% and 14.7%, respectively. Conclusion: E. coli isolated from chickens in Egypt was carried qac and antibiotic-resistant genes that affect the poultry industry

    Zoonotic risk and public health hazards of companion animals in the transmission of Helicobacter species

    No full text
    Objective: Helicobacteriosis is worldwide infection caused by Helicobacter species that affects both humans and animals. The current work correlated the zoonotic and public health repertoire of Helicobacter species in companion animals (dogs and cats). Methods: Samples were collected from apparently healthy dogs (70), cats (65), and 70 human patients who had been in contact with these animals in the Cairo and Giza governorates. The samples included serum, feces, and stool samples and biopsies of gastric fundus fragments (~5 mm). All samples were examined by culture, biochemical analysis, serology, and molecular identification. Results: Helicobacter species were detected at a rate of 43.4% by PCR. H. heilmannii was more predominant, with a rate of 16%, whereas H. pylori was detected at 6%. H. pylori and H. heilmannii were isolated from both human and companion samples, whereas all samples were negative for H. felis. Conclusion: Dogs and cats were reservoirs and played a major source in human helicobacters infection

    Pathogens Removal in a Sustainable and Economic High-Rate Algal Pond Wastewater Treatment System

    No full text
    This study evaluates the efficiency of a sustainable technology represented in an integrated pilot-scale system, which includes a facultative pond (FP), a high-rate algal pond (HRAP), and a rock filter (RF) for wastewater treatment to produce water that complies with the Egyptian standards for treated wastewater reuse. Still, limited data are available on pathogen removal through HRAP systems. Thus, in this study, the performance of the integrated system was investigated for the removal of Escherichia coli (E. coli), coliform bacteria, eukaryotic pathogens (Cryptosporidium spp., Giardia intestinalis, and helminth ova), somatic coliphages (SOMCPH), and human adenovirus (HAdV). Furthermore, physicochemical parameters were determined in order to evaluate the performance of the integrated system. The principal component analysis and non-metric multidimensional scaling analysis showed a strong significant effect of the integrated system on changing the physicochemical and microbial parameters from inlet to outlet. The mean log10 removal values for total coliform, fecal coliform, and E. coli were 5.67, 5.62, and 5.69, respectively, while 0.88 log10 and 1.65 log10 reductions were observed for HAdV and SOMCPH, respectively. The mean removal of Cryptosporidium spp. and Giardia intestinalis was 0.52 and 2.42 log10, respectively. The integrated system achieved 100% removal of helminth ova. The results demonstrated that the system was able to improve the chemical and microbial characteristics of the outlet to acceptable levels for non-food crops irrigation. Such findings together with low operation and construction costs of HRAPs should facilitate wider implementation of these nature-based systems in remote and rural communities. Overall, this study provides a novel insight into the performance of such systems to eliminate multiple microbial pathogens from wastewater
    corecore