44 research outputs found

    IgY antibodies: The promising potential to overcome antibiotic resistance

    Get PDF
    Antibiotic resistant bacteria are a growing threat to global health security. Whilst the emergence of antimicrobial resistance (AMR) is a natural phenomenon, it is also driven by antibiotic exposure in health care, agriculture, and the environment. Antibiotic pressure and inappropriate use of antibiotics are important factors which drive resistance. Apart from their use to treat bacterial infections in humans, antibiotics also play an important role in animal husbandry. With limited antibiotic options, alternate strategies are required to overcome AMR. Passive immunization through oral, nasal and topical administration of egg yolk-derived IgY antibodies from immunized chickens were recently shown to be effective for treating bacterial infections in animals and humans. Immunization of chickens with specific antigens offers the possibility of creating specific antibodies targeting a wide range of antibiotic-resistant bacteria. In this review, we describe the growing global problem of antimicrobial resistance and highlight the promising potential of the use of egg yolk IgY antibodies for the treatment of bacterial infections, particularly those listed in the World Health Organization priority list

    Middle East Respiratory Syndrome Coronavirus (MERS-CoV) – a ten-year (2012-2022) global analysis of human and camel infections, genomic sequences, lineages, and geographical origins

    Get PDF
    OBJECTIVES:The World Health Organization priority zoonotic pathogen Middle East respiratory syndrome (MERS) coronavirus (CoV) has a high case fatality rate in humans and circulates in camels worldwide. METHODS: We performed a global analysis of human and camel MERS-CoV infections, epidemiology, genomic sequences, clades, lineages, and geographical origins for the period January 1, 2012 to August 3, 2022. MERS-CoV Surface gene sequences (4061 bp) were extracted from GenBank, and a phylogenetic maximum likelihood tree was constructed. RESULTS: As of August 2022, 2591 human MERS cases from 26 countries were reported to the World Health Organization (Saudi Arabia, 2184 cases, including 813 deaths [case fatality rate: 37.2%]) Although declining in numbers, MERS cases continue to be reported from the Middle East. A total of 728 MERS-CoV genomes were identified (the largest numbers were from Saudi Arabia [222: human = 146, camels = 76] and the United Arab Emirates [176: human = 21, camels = 155]). A total of 501 ‘S’-gene sequences were used for phylogenetic tree construction (camels [n = 264], humans [n = 226], bats [n = 8], other [n=3]). Three MERS-CoV clades were identified: clade B, which is the largest, followed by clade A and clade C. Of the 462 clade B lineages, lineage 5 was predominant (n = 177). CONCLUSION: MERS-CoV remains a threat to global health security. MERS-CoV variants continue circulating in humans and camels. The recombination rates indicate co-infections with different MERS-CoV lineages. Proactive surveillance of MERS-CoV infections and variants of concern in camels and humans worldwide, and development of a MERS vaccine, are essential for epidemic preparedness

    High Genetic Diversity of Human Rhinovirus among Pilgrims with Acute Respiratory Tract Infections during 2019 Hajj Pilgrimage Season

    Get PDF
    OBJECTIVES: Acute Respiratory tract infections (ARI) due to Human Rhinoviruses (HRV) are common in pilgrims during the annual Hajj pilgrimage. The objective of this study was to investigate the genetic diversity of HRV among pilgrims with respiratory symptoms during Hajj 2019. METHODS: HRV infection was detected using multiplex real time RT-PCR. Cycle sequencing was performed on positive samples and the sequences were subjected to phylogenetic analysis. RESULTS: 19 HRV-positive respiratory samples were sequenced. All three serotypes of HRV were identified: HRV-A (13; [68.42%)) was more common than HRV-B (2; [10.53%]), and HRV-C (4; [21.05%]). HRV-A species were found to be of genotypes A101, A21, A30, A57, A23, A60 and A11. HRV-B species belonged to genotypes B4 and B84, and HRV-C species were of genotypes C15, C3 and C56. CONCLUSIONS: Sequencing studies of respiratory tract viruses in pilgrims are important. We provide preliminary evidence of high diversity of HRV genotypes circulating in pilgrims in a restricted area during Hajj. This requires further clinical and sequencing studies of viral pathogens in larger consorts of overseas and local pilgrims

    Symptomatic Acute Hepatitis C in Egypt: Diagnosis, Spontaneous Viral Clearance, and Delayed Treatment with 12 Weeks of Pegylated Interferon Alfa-2a

    Get PDF
    The aim of this study was to estimate the proportion of spontaneous viral clearance (SVC) after symptomatic acute hepatitis C and to evaluate the efficacy of 12 weeks of pegylated interferon alfa-2a in patients who did not clear the virus spontaneously.Patients with symptomatic acute hepatitis C were recruited from two "fever hospitals" in Cairo, Egypt. Patients still viremic three months after the onset of symptoms were considered for treatment with 12 weeks of pegylated interferon alfa-2a (180 microg/week).Between May 2002 and February 2006, 2243 adult patients with acute hepatitis were enrolled in the study. The SVC rate among 117 patients with acute hepatitis C was 33.8% (95%CI [25.9%-43.2%]) at three months and 41.5% (95%CI [33.0%-51.2%]) at six months. The sustained virological response (SVR) rate among the 17 patients who started treatment 4-6 months after onset of symptoms was 15/17 = 88.2% (95%CI [63.6%-98.5%]).Spontaneous viral clearance was high (41.5% six months after the onset of symptoms) in this population with symptomatic acute hepatitis C. Allowing time for spontaneous clearance should be considered before treatment is initiated for symptomatic acute hepatitis C

    A Direct Method for RT-PCR Detection of SARS-CoV-2 in Clinical Samples

    No full text
    Introduction: the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic of acute respiratory disease (COVID-19). SARS-CoV-2 is a positive-strand RNA virus and its genomic characterization has played a vital role in the design of appropriate diagnostics tests. The current RT-PCR protocol for SARS-CoV-2 detects two regions of the viral genome, requiring RNA extraction and several hours. There is a need for fast, simple, and cost-effective detection strategies. Methods: we optimized a protocol for direct RT-PCR detection of SARS-CoV-2 without the need for nucleic acid extraction. Nasopharyngeal samples were diluted to 1:3 using diethyl pyrocarbonate (DEPC)-treated water. The diluted samples were incubated at 95 °C for 5 min in a thermal cycler, followed by a cooling step at 4 °C for 5 min. Samples then underwent reverse transcription real-time RT-PCR in the E and RdRp genes. Results: our direct detection protocol showed 100% concordance with the standard protocol with an average Ct value difference of 4.38 for the E region and 3.85 for the RdRp region. Conclusion: the direct PCR technique was found to be a reliable and sensitive method that can be used to reduce the time and cost of the assay by removing the need for RNA extraction. It enables the use of the assay in research, diagnostics, and screening for COVID-19 in regions with fewer economic resources, where supplies are more limited allowing for wider use for screening
    corecore