14,935 research outputs found

    Poisson point process models solve the "pseudo-absence problem" for presence-only data in ecology

    Full text link
    Presence-only data, point locations where a species has been recorded as being present, are often used in modeling the distribution of a species as a function of a set of explanatory variables---whether to map species occurrence, to understand its association with the environment, or to predict its response to environmental change. Currently, ecologists most commonly analyze presence-only data by adding randomly chosen "pseudo-absences" to the data such that it can be analyzed using logistic regression, an approach which has weaknesses in model specification, in interpretation, and in implementation. To address these issues, we propose Poisson point process modeling of the intensity of presences. We also derive a link between the proposed approach and logistic regression---specifically, we show that as the number of pseudo-absences increases (in a regular or uniform random arrangement), logistic regression slope parameters and their standard errors converge to those of the corresponding Poisson point process model. We discuss the practical implications of these results. In particular, point process modeling offers a framework for choice of the number and location of pseudo-absences, both of which are currently chosen by ad hoc and sometimes ineffective methods in ecology, a point which we illustrate by example.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS331 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Toroidal Imploding Detonation Wave Initiator for Pulse Detonation Engines

    Get PDF
    Imploding toroidal detonation waves were used to initiate detonations in propane–air and ethylene–air mixtures inside of a tube. The imploding wave was generated by an initiator consisting of an array of channels filled with acetylene–oxygen gas and ignited with a single spark. The initiator was designed as a low-drag initiator tube for use with pulse detonation engines. To detonate hydrocarbon–air mixtures, the initiator was overfilled so that some acetylene oxygen spilled into the tube. The overfill amount required to detonate propane air was less than 2% of the volume of the 1-m-long, 76-mm-diam tube. The energy necessary to create an implosion strong enough to detonate propane–air mixtures was estimated to be 13% more than that used by a typical initiator tube, although the initiator was also estimated to use less oxygen. Images and pressure traces show a regular, repeatable imploding wave that generates focal pressures in excess of 6 times the Chapman–Jouguet pressure.Atheoretical analysis of the imploding toroidal wave performed using Whitham’s method was found to agree well with experimental data and showed that, unlike imploding cylindrical and spherical geometries, imploding toroids initially experience a period of diffraction before wave focusing occurs. A nonreacting numerical simulation was used to assist in the interpretation of the experimental data

    Planar Detonation Wave Initiation in Large-Aspect-Ratio Channels

    Get PDF
    In this study, two initiator designs are presented that are able to form planar detonations with low input energy in large-aspect-ratio channels over distances corresponding to only a few channel heights. The initiators use a single spark and an array of small channels to shape the detonation wave. The first design, referred to as the static initiator, is simple to construct as it consists of straight channels which connect at right angles. However, it is only able to create planar waves using mixtures that can reliably detonate in its small-width channels. An improved design, referred to as the dynamic initiator, is capable of detonating insensitive mixtures using an oxyacetylene gas slug injected into the initiator shortly before ignition, but is more complex to construct. The two versions are presented next, including an overview of their design and operation. Design drawings of each initiator are available elsewhere [7]. Finally, photographs and pressure traces of the resulting planar waves generated by each device are shown
    corecore