3,335 research outputs found
Heavy-Ion Beam Acceleration of Two-Charge States from an Ecr Ion Source
This paper describes a design for the front end of a superconducting (SC) ion
linac which can accept and simultaneously accelerate two charge states of
uranium from an ECR ion source. This mode of operation increases the beam
current available for the heaviest ions by a factor of two. We discuss the 12
MeV/u prestripper section of the Rare Isotope Accelerator (RIA) driver linac
including the LEBT, RFQ, MEBT and SC sections, with a total voltage of 112 MV.
The LEBT consists of two bunchers and electrostatic quadrupoles. The
fundamental frequency of both bunchers is half of the RFQ frequency. The first
buncher is a multiharmonic buncher, designed to accept more than 80% of each
charge state and to form bunches of extremely low longitudinal emittance (rms
emittance is lower than 0.2 keV/u nsec) at the output of the RFQ. The second
buncher is located directly in front of the RFQ and matches the velocity of
each charge-state bunch to the design input velocity of the RFQ. We present
full 3D simulations of a two-charge-state uranium beam including space charge
forces in the LEBT and RFQ, realistic distributions of all electric and
magnetic fields along the whole prestripper linac, and the effects of errors,
evaluated for several design options for the prestripper linac. The results
indicate that it is possible to accelerate two charge states while keeping
emittance growth within tolerable limits.Comment: LINAC2000, MOD0
Feasibility study of a 110 watt per kilogram lightweight solar array system
An investigation of the feasibility of a solar array panel subsystem which will produce 10,000 watts of electrical output at 1 A.U. with an overall beginning-of-life power-to-weight ratio of at least 110 watt/kg is reported. A description of the current baseline configuration which meets these requirements is presented. A parametric analysis of the single boom, two blanket planar solar array system was performed to arrive at the optimum system aspect ratio. A novel concept for the stiffening of a lightweight solar array by canting the solar cell blankets at a small angle to take advantage of the inherent in-plane stiffness to increase the symmetric out-of-plane frequency is introduced along with a preliminary analysis of the stiffening effect. A comparison of welded and soldered solar cell interconnections leads to the conclusion that welding is required on this ultralightweight solar array. The use of a boron/aluminum composite material in a BI-STEM type deployable boom is investigated as a possible advancement in the state-of-the-art
Research on Long-Term Care Homes for Older People in Brazil: Protocol for Scoping Review
LOTUS CONSORTIUM - Improving care in Long-term Care Institutions in Brazil and Europe through Collaboration and ResearchBackground
The fast growth of the ageing population in low and middle-income countries, such as Brazil, has allowed little time for social and health care systems to adapt. As the care needs for the most vulnerable and frail older people become increasingly complex, services and governments need to ensure that long term care homes deliver high-quality and evidence-based care to meet their healthcare needs.
Aim
To examine and map the range of research undertaken in Brazil regarding care homes published in peer reviewed journals.
Method
This scoping review will consider all relevant peer-reviewed primary studies fully or partly conducted in Brazilian care homes including those which consider workforce (for example, e.g. healthcare professionals, care staff, and management level staff) and care home residents (older people aged 60 years and above), using empirical and original research focused on any health related topic. The searches will be conducted using bibliographic databases (MEDLINE, EMBASE, LILACS and Google Scholar) and manual searching of the reference lists of relevant studies published in English, Portuguese or Spanish from inception up to 2018. Two authors will independently screen each document by title and abstract against the eligibility criteria. In case of disagreement, a third reviewer will be consulted. Data from the included studies will be extracted and reported using tables, graphs, and narrative accounts using elements of content analysis. The Mixed Methods Appraisal Tool will be used to appraise the methodological quality of the included studies
Three Bosons in One Dimension with Short Range Interactions I: Zero Range Potentials
We consider the three-boson problem with -function interactions in
one spatial dimension. Three different approaches are used to calculate the
phase shifts, which we interpret in the context of the effective range
expansion, for the scattering of one free particle a off of a bound pair. We
first follow a procedure outlined by McGuire in order to obtain an analytic
expression for the desired S-matrix element. This result is then compared to a
variational calculation in the adiabatic hyperspherical representation, and to
a numerical solution to the momentum space Faddeev equations. We find excellent
agreement with the exact phase shifts, and comment on some of the important
features in the scattering and bound-state sectors. In particular, we find that
the 1+2 scattering length is divergent, marking the presence of a zero-energy
resonance which appears as a feature when the pair-wise interactions are
short-range. Finally, we consider the introduction of a three-body interaction,
and comment on the cutoff dependence of the coupling.Comment: 9 figures, 2 table
Novel Methods for Determining Effective Interactions for the Nuclear Shell Model
The Contractor Renormalization (CORE) method is applied in combination with
modern effective-theory techniques to the nuclear many-body problem. A
one-dimensional--yet ``realistic''--nucleon-nucleon potential is introduced to
test these novel ideas. It is found that the magnitude of ``model-space''
(CORE) corrections diminishes considerably when an effective potential that
eliminates the hard-momentum components of the potential is first introduced.
As a result, accurate predictions for the ground-state energy of the there-body
system are made with relatively little computational effort when both
techniques are used in a complementary fashion.Comment: 14 pages, 5 figures and 2 tabl
Coarse-Graining the Lin-Maldacena Geometries
The Lin-Maldacena geometries are nonsingular gravity duals to degenerate
vacuum states of a family of field theories with SU(2|4) supersymmetry. In this
note, we show that at large N, where the number of vacuum states is large,
there is a natural `macroscopic' description of typical states, giving rise to
a set of coarse-grained geometries. For a given coarse-grained state, we can
associate an entropy related to the number of underlying microstates. We find a
simple formula for this entropy in terms of the data that specify the geometry.
We see that this entropy function is zero for the original microstate
geometries and maximized for a certain ``typical state'' geometry, which we
argue is the gravity dual to the zero-temperature limit of the thermal state of
the corresponding field theory. Finally, we note that the coarse-grained
geometries are singular if and only if the entropy function is non-zero.Comment: 29 pages, LaTeX, 3 figures; v2 references adde
From Gravitons to Giants
We discuss exact quantization of gravitational fluctuations in the half-BPS
sector around AdSS background, using the dual super Yang-Mills
theory. For this purpose we employ the recently developed techniques for exact
bosonization of a finite number of fermions in terms of bosonic
oscillators. An exact computation of the three-point correlation function of
gravitons for finite shows that they become strongly coupled at
sufficiently high energies, with an interaction that grows exponentially in
. We show that even at such high energies a description of the bulk physics
in terms of weakly interacting particles can be constructed. The single
particle states providing such a description are created by our bosonic
oscillators or equivalently these are the multi-graviton states corresponding
to the so-called Schur polynomials. Both represent single giant graviton states
in the bulk. Multi-particle states corresponding to multi-giant gravitons are,
however, different, since interactions among our bosons vanish identically,
while the Schur polynomials are weakly interacting at high enough energies.Comment: v2-references added, minor changes and typos corrected; 24 pages,
latex, 3 epsf figure
Junction of several weakly interacting quantum wires: a renormalization group study
We study the conductance of three or more semi-infinite wires which meet at a
junction. The electrons in the wires are taken to interact weakly with each
other through a short-range density-density interaction, and they encounter a
general scattering matrix at the junction. We derive the renormalization group
equations satisfied by the S-matrix, and we identify its fixed points and their
stabilities. The conductance between any pair of wires is then studied as a
function of physical parameters such as temperature. We discuss the possibility
of observing the effects of junctions in present day experiments, such as the
four-terminal conductance of a quantum wire and crossed quantum wires.Comment: RevTeX, 13 pages, including 4 eps figure
Probing the potential landscape inside a two-dimensional electron-gas
We report direct observations of the scattering potentials in a
two-dimensional electron-gas using electron-beam diffaction-experiments. The
diffracting objects are local density-fluctuations caused by the spatial and
charge-state distribution of the donors in the GaAs-(Al,Ga)As heterostructures.
The scatterers can be manipulated externally by sample illumination, or by
cooling the sample down under depleted conditions.Comment: 4 pages, 4 figure
- …