6,387 research outputs found

    On the Non-invasive Measurement of the Intrinsic Quantum Hall Effect

    Full text link
    With a model calculation, we demonstrate that a non-invasive measurement of intrinsic quantum Hall effect defined by the local chemical potential in a ballistic quantum wire can be achieved with the aid of a pair of voltage leads which are separated by potential barriers from the wire. B\"uttiker's formula is used to determine the chemical potential being measured and is shown to reduce exactly to the local chemical potential in the limit of strong potential confinement in the voltage leads. Conditions for quantisation of Hall resistance and measuring local chemical potential are given.Comment: 16 pages LaTex, 2 post-script figures available on reques

    Accelerating universe emergent from the landscape

    Get PDF
    We propose that the existence of the string landscape suggests the universe can be in a quantum glass state, where an extremely large viscosity is generated, and long distance dynamics slows down. At the same time, the short distance dynamics is not altered due to the separation of time scales. This scenario can help to understand some controversies in cosmology, for example the natural existence of slow roll inflation and dark energy in the landscape, the apparent smallness of the cosmological constant. We see also that moduli stabilization is no longer necessary. We further identify the glass transition point, where the viscosity diverges, as the location of the cosmic horizon. We try to reconstruct the geometry of the accelerating universe from the structure of the landscape, and find that the metric should have an infinite jump when crossing the horizon. We predict that the static coordinate metric for dS space breaks down outside the horizon.Comment: 20 pages, no figures, harvma

    M-theory Supertubes with Three and Four Charges

    Full text link
    Using the covariant M5-brane action, we construct configurations corresponding to supertubes with three and four charges. We derive the BPS equations and study the full structure of the solutions. In particular, we find new solutions involving arbitrariness in field strengths.Comment: 24 pages, references added and typos correcte

    Renormalisation and fixed points in Hilbert Space

    Full text link
    The energies of low-lying bound states of a microscopic quantum many-body system of particles can be worked out in a reduced Hilbert space. We present here and test a specific non-perturbative truncation procedure. We also show that real exceptional points which may be present in the spectrum can be identified as fixed points of coupling constants in the truncation procedure.Comment: 4 pages, 1 tabl

    Rational foundation of GR in terms of statistical mechanic in the AdS/CFT framework

    Full text link
    In this article, we work out the microscopic statistical foundation of the supergravity description of the simplest 1/2 BPS sector in the AdS(5)/CFT(4). Then, all the corresponding supergravity observables are related to thermodynamical observables, and General Relativity is understood as a mean-field theory. In particular, and as an example, the Superstar is studied and its thermodynamical properties clarified.Comment: 13 pages, 6 eps figures, latex, some improvements introduced, reference added, typos correcte

    Human epidermal growth factor receptor bispecific ligand trap RB200: abrogation of collagen-induced arthritis in combination with tumour necrosis factor blockade

    Get PDF
    INTRODUCTION: Rheumatoid arthritis (RA) is a chronic disease associated with inflammation and destruction of bone and cartilage. Although inhibition of TNFα is widely used to treat RA, a significant number of patients do not respond to TNFα blockade, and therefore there is a compelling need to continue to identify alternative therapeutic strategies for treating chronic inflammatory diseases such as RA. The anti-epidermal growth factor (anti-EGF) receptor antibody trastuzumab has revolutionised the treatment of patients with EGF receptor-positive breast cancer. Expression of EGF ligands and receptors (known as HER) has also been documented in RA. The highly unique compound RB200 is a bispecific ligand trap that is composed of full-length extracellular domains of HER1 and HER3 EGF receptors. Because of its pan-HER specificity, RB200 inhibits responses mediated by HER1, HER2 and HER3 in vitro and in vivo. The objective of this study was to assess the effect of RB200 combined with TNF blockade in a murine collagen-induced arthritis (CIA) model of RA. METHODS: Arthritic mice were treated with RB200 alone or in combination with the TNF receptor fusion protein etanercept. We performed immunohistochemistry to assess CD31 and in vivo fluorescent imaging using anti-E-selectin antibody labelled with fluorescent dye to elucidate the effect of RB200 on the vasculature in CIA. RESULTS: RB200 significantly abrogated CIA by reducing paw swelling and clinical scores. Importantly, low-dose RB200 combined with a suboptimal dose of etanercept led to complete abrogation of arthritis. Moreover, the combination of RB200 with etanercept abrogated the intensity of the E-selectin-targeted signal to the level seen in control animals not immunised to CIA. CONCLUSIONS: The human pan-EGF receptor bispecific ligand trap RB200, when combined with low-dose etanercept, abrogates CIA, suggesting that inhibition of events downstream of EGF receptor activation, in combination with TNFα inhibitors, may hold promise as a future therapy for patients with RA

    Metal-to-insulator transition and magnetic ordering in CaRu_{1-x}Cu_xO_3

    Full text link
    CaRuO_3 is perovskite with an orthorhombic distortion and is believed to be close to magnetic ordering. Magnetic studies of single crystal and polycrystalline CaRu_{1-x}Cu_xO_3 (0\le x \le 15 at.%Cu) reveal that spin-glass-like transition develops for x\le 7 at.%Cu and obtained value for effective magnetic moment p_{eff}=3.55 mu_B for x=5 at.% Cu, single crystal, indicates presence of Ru^{5+}. At higher Cu concentrations more complex magnetic behaviors are observed. Electrical resistivity measured on polycrystalline samples shows metal-to-insulator transition (MIT) at 51 K for only 2 at.% Cu. Charge compensation, which is assumed to be present upon Cu^{2+/3+} substitution, induces appearance of Ru^{5+} and/or creation of oxygen vacancies in crystal structure. Since the observed changes in physical properties are completely attributable to the charge compensation, they cannot be related to behaviors of pure compound where no such mechanism is present. This study provides the criterion for "good" chemical probes for studying Ru-based perovskites.Comment: 12 pages, 7 figure

    Three Bosons in One Dimension with Short Range Interactions I: Zero Range Potentials

    Full text link
    We consider the three-boson problem with δ\delta-function interactions in one spatial dimension. Three different approaches are used to calculate the phase shifts, which we interpret in the context of the effective range expansion, for the scattering of one free particle a off of a bound pair. We first follow a procedure outlined by McGuire in order to obtain an analytic expression for the desired S-matrix element. This result is then compared to a variational calculation in the adiabatic hyperspherical representation, and to a numerical solution to the momentum space Faddeev equations. We find excellent agreement with the exact phase shifts, and comment on some of the important features in the scattering and bound-state sectors. In particular, we find that the 1+2 scattering length is divergent, marking the presence of a zero-energy resonance which appears as a feature when the pair-wise interactions are short-range. Finally, we consider the introduction of a three-body interaction, and comment on the cutoff dependence of the coupling.Comment: 9 figures, 2 table

    Probing the potential landscape inside a two-dimensional electron-gas

    Full text link
    We report direct observations of the scattering potentials in a two-dimensional electron-gas using electron-beam diffaction-experiments. The diffracting objects are local density-fluctuations caused by the spatial and charge-state distribution of the donors in the GaAs-(Al,Ga)As heterostructures. The scatterers can be manipulated externally by sample illumination, or by cooling the sample down under depleted conditions.Comment: 4 pages, 4 figure
    corecore