20 research outputs found

    The utility of N5 for gene therapy of human cancer

    No full text
    Cancer is a result of defects in the coordination of cell proliferation and programmed cell death. The extent of cell death is physiologically controlled by the activation of a programmed suicide pathway that results in a morphologically recognizable form of death termed apoptosis. Inducing apoptosis in tumor cells by gene therapy provides a potentially effective means to treat human cancers. The p84N5 is a novel nuclear death domain containing protein that has been shown to bind an amino terminal domain of retinoblastoma tumor suppressor gene product (pRb). Expression of N5 can induce apoptosis that is dependent upon its intact death domain and is inhibited by pRb. In many human cancer cells the functions of pRb are either lost through gene mutation or inactivated by different mechanisms. N5 based gene therapy may induce cell death preferentially in tumor cells relative to normal cells. We have demonstrated that N5 gene therapy is less toxic to normal cells than to tumor cells. To test the possibility that N5 could be used in gene therapy of cancer, we have generated a recombinant adenovirus engineered to express N5 and test the effects of viral infection on growth and tumorigenicity of human cancer cells. Adenovirus N5 infection significantly reduced the proliferation and tumorigenicity of breast, ovarian, and osteosarcoma tumor cell lines. Reduced proliferation and tumorigenicity were mediated by an induction of apoptosis as indicated by DNA fragmentation in infected cells. We also test the potential utility of N5 for gene therapy of pancreatic carcinoma that typically respond poorly to conventional treatment. Adenoviral mediated N5 gene transfer inhibits the growth of pancreatic cancer cell lines in vitro. N5 gene transfer also reduces the growth and metastasis of human pancreatic adenocarcinoma in subcutaneous and orthotopic mouse model. Interestingly, the pancreatic adenocarcinoma cells are more sensitive to N5 than they are to p53, suggesting that N5 gene therapy may be effective in tumors resistant to p53. We also test the possibilities of the use of N5 and p53 together on the inhibition of pancreatic cancer cell growth in vitro and vivo. Simultaneous use of N5 and RbΔCDK has been found to exert a greater extent on the inhibition of pancreatic cancer cell growth in vitro and in vivo

    Computational and experimental research on mechanism of cis/trans isomerization of oleic acid

    No full text
    The harm of trans-fatty acids to health has aroused public concern. It is believed that the main source of trans-fatty acids in diets is the isomerization of unsaturated fatty acids in edible oils during cooking. However, the information on the isomerization mechanism is very limited. In this paper, we used oleic acid, an unsaturated fatty acid, as a simplified model for edible oil and investigated the mechanism of cis/trans isomerization by computation and experiments. The computational results show that Rc-O-O-H is a very important intermediate, and the cleavage of O-O bond in Rc-O-O-H is the rate-controlling step during the cis/trans isomerization. Using the ATR-FTIR measurements, the contents of elaidic acid were measured quantitatively in sites. The experimental results indicate that the cis/trans isomerization of oleic acid can occur obviously only under oxidizing condition when the temperature is higher than 120 °C

    Cobalt-graphene nanomaterial as an efficient catalyst for selective hydrogenation of 5-hydroxymethylfurfural into 2,5-dimethylfuran

    No full text
    The synergy of single Co atoms/Co clusters and CoOx nanoparticles, as well as reduced graphene oxide, enabled a Co-graphene nanomaterial to exhibit superior catalytic performance in the hydrogenation of HMF into DMF, including the omission of pre-reduction treatment, high specificity for cleavage of C?O/C-O bonds, excellent catalytic activity and enhanced stability

    Cobalt–Graphene Catalyst for Selective Hydrodeoxygenation of Guaiacol to Cyclohexanol

    No full text
    Herein, cobalt-reduced graphene oxide (rGO) catalyst was synthesized with a practical impregnation–calcination approach for the selective hydrodeoxygenation (HDO) of guaiacol to cyclohexanol. The synthesized Co/rGO was characterized by transmission electron microscopy (TEM), high-angle annular dark-field scanning TEM (HAADF-STEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffraction (XRD), and H2 temperature-programmed reduction (H2-TPR) analysis. According to the comprehensive characterization results, the catalyst contains single Co atoms in the graphene matrix and Co oxide nanoparticles (CoOx) on the graphene surface. The isolated Co atoms embedded in the rGO matrix form stable metal carbides (CoCx), which constitute catalytically active sites for hydrogenation. The rGO material with proper amounts of N heteroatoms and lattice defects becomes a suitable graphene material for fabricating the catalyst. The Co/rGO catalyst without prereduction treatment leads to the complete conversion of guaiacol with 93.2% selectivity to cyclohexanol under mild conditions. The remarkable HDO capability of the Co/rGO catalyst is attributed to the unique metal–acid synergy between the CoCx sites and the acid sites of the CoOx nanoparticles. The CoCx sites provide H while the acid sites of CoOx nanoparticles bind the C-O group of reactants to the surface, allowing easier C-O scission. The reaction pathways were characterized based on the observed reaction–product distributions. The effects of the process parameters on catalyst preparation and the HDO reaction, as well as the reusability of the catalyst, were systematically investigated

    One step fabrication of C-doped BiVO4 with hierarchical structures for a high-performance photocatalyst under visible light irradiation

    No full text
    A novel sol-gel method was developed for the fabrication of a C-doped BiVO4 (BVOBxC) photocatalyst with fine hierarchical structures templated from Papilio paris butterfly wings. The fine hierarchical butterfly wing structures of BVOBxC were confirmed by the SEM and TEM observations. The doped carbon in BVOBxC was formed in situ from the biotemplate during a calcination process and the amount of doping could be controlled from 0.6-2.4 wt percent by adjusting the calcination temperature. It was found that the sample calcined at 400 degrees C with a carbon content of 1.5 wtpercent (BVOB1.5C) demonstrated the best photocatalytic activity in both photocatalytic degradation and O 2 evolution from water splitting (ca. 800 umol L-1). Under visible light irradiation (A \u3e 420 nm), the photocatalytic O2 evolution from BVOB1.5C (ca. 800 umol L-1, after 5 h) is 16 times higher than that of pure BiVO4 powder (BVOP) (ca. 49 umol L-1), and the photocatalytic decomposition efficiency of MB for [email protected] is 6.3 times higher than that of pure BVOP. The improved photocatalytic performance is attributed to the synergetic effect of the unique morphology and composition control. It is believed that the hierarchical butterfly wing structures of BVOB1.5C contribute significantly to the absorption enhancement under visible light (480 to 700 nm), which was supported by UV-Vis diffuse reflectance measurements. The photocatalytic performance was further enhanced by the C-doping as it improves the efficient separation and transfer of the photogenerated electrons and holes, as evidenced by the electron paramagnetic resonance (EPR) measurements. This strategy provides a simple one-step method to fabricate a high-performance photocatalyst, which enables the simultaneous control of the crystal phase, morphology, and carbon element doping

    Biomimetic fabrication of WO3 for water splitting under visible light with high performance

    No full text
    Inspired by the high light-harvesting properties of typical butterfly wings, ceramic WO3 butterfly wings with hierarchical structures of bio-butterfly wings was fabricated using a template of PapilioParis butterfly wings through a sol-gel method. The effect of calcination temperatures on the structures of the ceramic butterfly wings was investigated and the results showed that the WO3 butterfly wing replica calcined at 550 degrees C (WO3 replica-550) is a single phase and has a high crystallinity and relatively fine hierarchical structure. The average grain size of WO3 replica-550 and WO3 powder are around 32.6 and 42.2 nm, respectively. Compared with pure WO3 powder, WO3 replica-550 demonstrated a higher light-harvesting capability in the region from 460 to 700 nm and more importantly the higher charge separation rate, as evidenced by electron paramagnetic resonance measurements. Photocatalytic O-2 evolutions from water were investigated on the ceramic butterfly wings and pure WO3 powder under visible light (lambda \u3e 420 nm). The results showed that the amount of O-2 produced from WO3 replica-550 is 50 % higher than that of the pure WO3 powder. The improved photocatalytic performance of WO3 replica-550 is attributed to the quasi-honeycomb structure inherited from the PapilioParis butterfly wings, providing both high light-harvesting efficiency and efficient charge transport through the WO3

    Superior H2 production by hydrophilic ultrafine Ta2O5 engineered covalently on graphene

    No full text
    A H2O2-mediated hydrothermal method was developed for the fabrication of hydrophilic Ta2O5/graphene composite. The composite shows a superior H2 productivity, up to 30 mmol g-1 h-1 when used as a photocatalyst for water splitting, corresponding to an apparent quantum efficiency of 33.8% at 254 nm. This superior performance is due to the hydrophilic nature of the composite and more importantly due to the ultrafine Ta2O5 nanoparticles (about 4.0 ± 1.5 nm) which are covalently bonded with the conductive graphene. The hydrophilic property of the composite is attributed to the use of H2O2 in the hydrothermal process. The ultrafine size of the Ta2O5 particles which are covalently bonded with the graphene sheets is attributed to the use of sonication in the synthesis process. Furthermore, the hydrophilic Ta2O5/Gr composite is durable, which is beneficial to long term photocatalysis. The strategy reported here provides a new approach to designing photocatalysts with superior performance for H2 production

    Synthesis of BiVO4@C core-shell structure on reduced graphene oxide with enhanced visible-light photocatalytic activity

    No full text
    Herein, a facile strategy for the controllable synthesis of BiVO4@C core-shell nanoparticles on reduced graphene oxide (RGO) is reported. The BiVO4 particle size can be controlled in the process by adjusting the volume ratio of glycerol in the sol-gel solution. The glycerol layers adsorbed on BiVO4 (BiVO4@glycerol) made it possible to form hydrogen bonds between BiVO4@glycerol and graphene oxide with the assistance of ultrasound. After thermal treatment, glycerol adsorbed on the BiVO4 particles formed amorphous carbon shells to link the particles and RGO. As a result, the obtained RGO-BiVO4@C nanocomposite showed a five times higher rate in O2 evolution from water under visible-light irradiation. Also, it demonstrated a six times higher photocatalytic performance enhancement than that of pure BiVO4 in the degradation of RhodamineB. The enhanced performance is attributed to the carbon shells that restrict the growth of BiVO4, the reduced graphene oxide that improves the electronic conductivity of the composite, and importantly, the bonds formed between the carbon shells and RGO that reduce the recombination loss of photogenerated charges effectively. The strategy is simple, effective, and can be extended to other ternary oxides with controlled size and high performance
    corecore