27 research outputs found

    Novel bio-based and biodegradable polymer blends

    Get PDF
    Most plastic materials, including high performance thermoplastics and thermosets are produced entirely from petroleum-based products. The volatility of the natural oil markets and the increasing cost of petroleum have led to a push to reduce the dependence on petroleum products. Together with an increase in environmental awareness, this has promoted the use of alternative, biorenewable, environmentally-friendly products, such as biomass. The growing interest in replacing petroleum-based products by inexpensive, renewable, natural materials is important for sustainable development into the future and will have a significant impact on the polymer industry and the environment. This thesis involved characterization and development of two series of novel bio-based polymer blends, namely polyhydroxyalkanoate (PHA)/polyamide (PA) and poly(lactic acid) (PLA)/soy protein. Blends with different concentrations and compatible microstructures were prepared using twin-screw extruder. For PHA/PA blends, the poor mechanical properties of PHA improved significantly with an excellent combination of strength, stiffness and toughness by adding PA. Furthermore, the effect of blending on the viscoelastic properties has been investigated using small-amplitude oscillatory shear flow experiments as a function of blend composition and angular frequency. The elastic shear modulus (Gâ€Č) and complex viscosity of the blends increased significantly with increasing the concentration of PHA. Blending PLA with soy protein aims at reducing production cost, as well as accelerating the biodegradation rate in soil medium. In this work, the mechanical, thermal and morphological properties of the blends were investigated using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and tensile tests

    Novel bio-based and biodegradable polymer blends

    No full text
    Most plastic materials, including high performance thermoplastics and thermosets are produced entirely from petroleum-based products. The volatility of the natural oil markets and the increasing cost of petroleum have led to a push to reduce the dependence on petroleum products. Together with an increase in environmental awareness, this has promoted the use of alternative, biorenewable, environmentally-friendly products, such as biomass. The growing interest in replacing petroleum-based products by inexpensive, renewable, natural materials is important for sustainable development into the future and will have a significant impact on the polymer industry and the environment. This thesis involved characterization and development of two series of novel bio-based polymer blends, namely polyhydroxyalkanoate (PHA)/polyamide (PA) and poly(lactic acid) (PLA)/soy protein. Blends with different concentrations and compatible microstructures were prepared using twin-screw extruder. For PHA/PA blends, the poor mechanical properties of PHA improved significantly with an excellent combination of strength, stiffness and toughness by adding PA. Furthermore, the effect of blending on the viscoelastic properties has been investigated using small-amplitude oscillatory shear flow experiments as a function of blend composition and angular frequency. The elastic shear modulus (Gâ€Č) and complex viscosity of the blends increased significantly with increasing the concentration of PHA. Blending PLA with soy protein aims at reducing production cost, as well as accelerating the biodegradation rate in soil medium. In this work, the mechanical, thermal and morphological properties of the blends were investigated using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and tensile tests.</p

    Attitude Estimation Method for Target Ships Based on LiDAR Point Clouds via An Improved RANSAC

    No full text
    The accurate attitude estimation of target ships plays a vital role in ensuring the safety of marine transportation, especially for tugs. A Light Detection and Ranging (LiDAR) system can generate 3D point clouds to describe the target ship’s geometric features that possess attitude information. In this work, the authors put forward a new attitude-estimation framework that first extracts the geometric features (i.e., the board-side plane of a ship) using point clouds from shipborne LiDAR and then computes the attitude that is of interest (i.e., yaw and roll in this paper). To extract the board-side plane accurately on a moving ship with sparse point clouds, an improved Random Sample Consensus (RANSAC) algorithm with a pre-processing normal vector-based filter was designed to exclude noise points. A real water-pool experiment and two numerical tests were carried out to demonstrate the accuracy and general applicability of the attitude estimation of target ships brought by the improved RANSAC and estimation framework. The experimental results show that the average mean absolute errors of the angle and angular-rate estimation are 0.4879 deg and 4.2197 deg/s, respectively, which are 92.93% and 75.36% more accurate than the estimation based on standard RANSAC

    A Combined Method for Predicting the Boron Deposited Mass and the CIPS Risk

    No full text
    CIPS is a shift in the axial power towards the bottom half of the core, also known as axial offset anomaly (AOA), which results from the deposited of corrosion products during an operation. The main reason of CIPS is the solute particles especially boron compounds concentrated inside the porous deposit. The impact of CIPS is that the axial power distribution control may be more difficult and the shutdown margin can be decreased simultaneously. Besides, it also requires estimated critical condition (ECC) calculations to account for the effects of AOA. In this article, thermal-hydraulic subchannel code and boron deposit model have been combined to analyze the CIPS risk. The neutronics codes deal with the generation of homogenized neutron cross section as well as the calculation of local power factor. A simple rod assembly is analyzed with this combined method and simulation results are presented. Simulation results provide the boron hideout amount inside crud deposits and power shapes. The obtained results clearly show the power shape suppression in regions where crud deposits exist, which is a clear indication of CIPS phenomenon. And the CIPS effects on CHF have also been investigated. Result shows a margin of DNBR decrease in the crud case

    Theoretical formulation and performance analysis of a novel hydride heat Pump(HHP) integrated heat recovery system

    No full text
    Many efforts are dedicated globally to industrial waste heat recovery in hope of reducing energy consumption and pollutants emission. A novel system composed of direct heat exchanger and hydride heat pump is proposed to achieve this target, which could effectively utilize the sensible heat from a process stream at both high and low temperatures. In this paper, we present the fundamental procedure for formulation of such a system, including heat duty assignment, working pair screening and cycle modification. In addition, thermodynamic analysis on the performance of the integrated system is conducted, and the results exhibit the possibility of building competitive alternative to existing absorption heat exchanger (AHE). Finally, the impacts of design variables and material properties on system performance are discussed, providing a benchmark for applying such a system on various occasions

    The application of terahertz technology in ultra high voltage large tonnage insulator detection

    No full text
    Among major nondestructive testing technologies (NDT), such as X-ray and ultra-sound, Terahertz (THz) waves present significant transmission rate through most of nonconductive materials without the need of applying couplant while posing zero ionized radiation hazard. In comparison to microwave NDT, terahertz technology boasts a superior spatial resolution and measurement precision due to its shorter wavelength. As such, it is considered to be the most promising technology for industrial NDT applications. To analyze of THz wave transmission characteristics within porcelain insulator and obtain large quantity of testing data with repeatable measurement condition, this paper reports an experimental approach using Kaolin, in powdery form, to emulate the aging behavior of porcelain, and a THz sensor to detect such imperceptible aging process where micrometer-scale cracks slowly develop inside of porcelain insulators. To support the data acquisition from distance, a LORA communication module was integrated in the sensor for using under high-voltage environment. In addition, a dedicated user-interface software has been developed to receive the wireless data as well as conducting data analysis, crack recognition and graphic display. The experiment successfully demonstrated a very feasible solution for online monitoring of the aging process of porcelain insulators by using compact THz sensor buried in the insulator

    Construction of a universal recombinant expression vector that regulates the expression of human lysozyme in milk

    No full text
    The mammary gland provides a novel method for producing recombinant proteins in milk of transgenic animals. A key component in the technology is the construction of an efficient milk expression vector. Here, we established a simple method to construct a milk expression vector, by a combination of homologous recombination and digestion-ligation. Our methodology is expected to have the advantages of both plasmid and bacterial artificial chromosome (BAC) vectors. The BAC of mouse whey acidic protein gene (mWAP) was modified twice by homologous recombination to produce a universal expression vector, and the human lysozyme gene (hLZ) was then inserted into the vector by a digestion-ligation method. The final vector containing the 8.5 kb mWAP 5&#8242; promoter, 4.8 kb hLZ genomic DNA, and 8.0 kb mWAP 3&#8242; genomic DNA was microinjected into pronuclei of fertilized mouse embryos, to successfully generate two transgenic mouse lines that expressed recombinant human lysozyme (rhLZ) in milk. The highest expression level of rhLZ was 0.45 g&#183;L&#8722;1, and rhLZ exhibited the same antibacterial activity as native hLZ. Our results have provided a simple approach to construct a universal milk expression vector, and demonstrated that the resulting vector regulates the expression of hLZ in milk
    corecore