27 research outputs found

    A high infectious simian adenovirus type 23 vector based vaccine efficiently protects common marmosets against Zika virus infection.

    Get PDF
    Zika virus (ZIKV) has spread in many countries or territories causing severe neurologic complications with potential fatal outcomes. The small primate common marmosets are susceptible to ZIKV, mimicking key features of human infection. Here, a novel simian adenovirus type 23 vector-based vaccine expressing ZIKV pre-membrane-envelope proteins (Sad23L-prM-E) was produced in high infectious titer. Due to determination of immunogenicity in mice, a single-dose of 3×108 PFU Sad23L-prM-E vaccine was intramuscularly inoculated to marmosets. This vaccine raised antibody titers of 104.07 E-specific and 103.13 neutralizing antibody (NAb), as well as robust specific IFN-γ secreting T-cell response (1,219 SFCs/106 cells) to E peptides. The vaccinated marmosets, upon challenge with a high dose of ZIKV (105 PFU) six weeks post prime immunization, reduced viremia by more than 100 folds, and the low level of detectable viral RNA (103.66) and T-cell response (>726 SFCs/106 PBMCs) were acquired 1-2 weeks post exposure to ZIKV, while non-vaccinated control marmosets developed long-term high titer of ZIKV (105.73 copies/ml) (P<0.05). No significant pathological lesions were observed in marmoset tissues. Sad23L-prM-E vaccine was detectable in spleen, liver and PBMCs at least 4 months post challenge. In conclusion, a prime immunization with Sad23L-prM-E vaccine was able to protect marmosets against ZIKV infection when exposed to a high dose of ZIKV. This Sad23L-prM-E vaccine is a promising vaccine candidate for prevention of ZIKV infection in humans

    Coordinated Headway-Based Control Method to Improve Public Transit Reliability considering Control Points Layout

    Get PDF
    The headway-based control method is usually used to regulate the bus headways and improve reliability of public transit. In general, the holding control strategy is applied at the control point, because enough space for dwell longer at the control point is required, while the stop-skipping control strategy can be used at any bus stop. However, in the headway-based control method, too much stop-skipping will bring longer waiting time and make the passengers impatient. The number and distribution of control points for stop-skipping are not considered in previous self-equalizing bus headway control works. Therefore, in this paper, the control points selection rules for stop-skipping involving their number and distribution on the bus route are discussed. A second by second discrete system is formulated to describe the bus operation. In the proposed control method, the threshold value for activating stop-skipping strategy is raised, avoiding provoking much additional waiting time because of boarding rejected. In the numerical analysis, a set of cases are conducted to evaluate the performance of control method under different number and distribution of control points for stop-skipping. The numerical results show that distribution of control points for stop-skipping has a greater influence on the public transit than the number

    Operational Efficiency Evaluation of Intersections with Dynamic Lane Assignment Using Field Data

    No full text
    The dynamic lane assignment at signalized intersections is a possible countermeasure to address the traffic demand variability problem. However, the operational efficiency is affected by the unfamiliarity of the drivers. This paper evaluates the operational efficiency of the intersections with dynamic lane assignment using field data collected at five intersections in China. A total of 63488 vehicles were captured, which were divided into four groups according to the lanes they drive on: Group 1, the variable approach lane; group 2, the lane adjacent to the variable lane with the same lane-use; group 3, the lane adjacent to the variable lane with different lane-use of the variable lane; and group 4, the lanes with the same lane-use as the variable lane at other approaches of the intersection. The statistical analysis was conducted to identify the difference of saturation flow rate among the four groups. A saturation flow rate adjustment model was established accordingly. Results indicate that the using of the dynamic lane assignment decreases the saturation flow rate of the variable lane and the adjacent lane with different lane-use 22.86% and 9.80%, respectively. For the variable lane, the reduction of the saturation flow rate comes from three aspects: the unequal distribution of traffic (8.9%), the mandatory lane-changing (10.7%), and the lane blockage (4.9%)

    Numerical Simulation of the Trajectory of UAVs Electrostatic Droplets Based on VOF-UDF Electro-Hydraulic Coupling and High-Speed Camera Technology

    No full text
    The electrostatic spray technology can significantly improve the utilization rate of liquid medicine under the operation characteristics of unmanned aerial vehicles (UAVs) with small load and low spray volume. To explore the settlement law of electrostatic droplets, further improve the amount of droplets deposited in target crops, and reduce the loss of missing target, this study adopted the method of combining numerical simulation and high-speed photography to study the movement characteristics of electrostatic droplets of UAV induction conical electrostatic nozzle. Based on the droplet spatial dynamics theory, a user-defined function and volume of fluid (UDF-VOF) multiphase spray model is established to simulate the trajectory of electrostatic droplet. TEMA software is used to analyze the droplet motion image under electrostatic field, and the characteristic parameters, such as trajectory and velocity are obtained. Theoretical analysis and spray test results show that the main factors affecting electrostatic droplet settlement are charging voltage, droplet falling distance, and airflow velocity. The optimal charging voltage of electrostatic droplet is 14 kv, the maximum charge-mass ratio is 1.04 mC/kg, and the average particle size is 209.77 μm. The numerical simulation results show that spray height, charging voltage, and lateral wind speed have significant effects on droplet sedimentation. The results of high-speed camera analysis show that the induced electric field causes the droplet to adsorb the target crop, resulting in the droplet movement trajectory deflection

    Numerical Simulation on Air-Liquid Transient Flow and Regression Model on Air-Liquid Ratio of Air Induction Nozzle

    No full text
    Air induction nozzle (AIN) has a special Venturi structure that has been widely used in the field of reducing the probability of drift of pesticide droplets and realizing precise application. The present research mainly adopts the method of comparative test and analyzes the difference between AIN and standard fan nozzle. However, the research on internal flow characteristics and air–liquid ratio (ALR) of AIN is very limited. In order to detect the air-liquid transient flow distribution and the influence of the geometric parameter structure of Venturi on the air–liquid ratio in the air induction nozzle, numerical simulation and air-liquid ratio prediction model of AIN combined with TD (Turbo Drop series) type Venturi tubes and ST110 (standard nozzle series) type fan nozzles are used. Based on the VOF (volume of fluid) model and Realizable k-ε turbulence control method, the TD-ST combined AIN is simulated numerically using open input and exit boundary conditions. The results show that the transient flow characteristic of the combined AIN is determined by the geometric structure of the Venturi tube, and the internal velocity and pressure change significantly at the Venturi angle. Under the same ST110 fan nozzle, the size of the larger TD Venturi tube will decrease the air phase content in the air–liquid flow. TD03-ST06 combined AIN has a maximum volume flow of 0.0092 (L/min) under 0.6 MPa. The air–liquid ratio regression model is established by designing the intake volume measurement system. According to this model, the influence law of tube size and spray parameters on the air–liquid ratio can be clarified. After variance analysis, it is proved that this model is suitable for air–liquid ratio prediction of TD-ST combined AIN. This study clarifies the air–liquid coupling law inside AIN and provides some reference for the quantitative analysis of the relationship between the geometric parameters, spray parameters, and the air–liquid ratio

    Optimal Design and Dynamic Characteristic Analysis of Double-Link Trapezoidal Suspension for 3WPYZ High Gap Self-Propelled Sprayer

    No full text
    A fast spraying speed, wide working area, and easy operation are the operational advantages of high-clearance boom sprayers. To address the issue of spray boom mechanical vibration affecting the spraying effect, a double-link trapezoidal boom suspension is designed for the 3WPYZ sprayer. This suspension can achieve passive vibration reduction, active balance, and ground profiling. The kinematic model of the boom suspension is established based on D’Alembert’s principle and the principle of multi-body dynamics, and the design factors affecting the stability of the boom are determined. Through orthogonal experimental design and virtual kinematics simulation, the influence of the boom length and orifice diameter of each part on the swing angle and the natural frequency of the boom suspension is investigated. Design-Expert 8.0.6 software is used to analyze and optimize the test results. The optimization results show that, when the connecting boom length LAB is 265 mm, the inner boom suspension boom length LAD is 840 mm, the outer boom suspension boom length LBC is 1250 mm, and the throttle hole diameter d is 4 mm; the maximum swing angle of the boom suspension is reduced by 53.02%. In addition, the natural frequency of the boom is reduced from 1.3143 rad/s to 1.1826 rad/s, and the dynamic characteristic optimization effect is remarkable. The modal analysis results show that the first sixth-order vibration test frequency of the boom sprayer suspension designed in this paper meets the requirements and avoids the influence of external factors. Field tests show that, when the sprayer is excited by the environment at 3.5° to 4°, the boom suspension can reduce the vibration transmitted by the body to a reasonable range. The static analysis shows that the structural design of this study reduces the stress at the connection of the end boom suspension, the maximum displacement, and the maximum stress of the inner boom suspension. The test results of the dynamic characteristics of the implement are basically consistent with the virtual model simulation test results, thus achieving the optimization objectives

    Transcriptome and physiological analysis of increase in drought stress tolerance by melatonin in tomato.

    No full text
    Drought stress seriously affects tomato growth, yield and quality. Previous reports have pointed out that melatonin (MT) can alleviate drought stress damage to tomato. To better understand the possible physiological and molecular mechanisms, chlorophyll fluorescence parameters and leaf transcriptome profiles were analyzed in the "Micro Tom" tomato cultivar with or without melatonin irrigation under normal and drought conditions. Polyethylene glycol 6000 (PEG6000) simulated continuous drought treatment reduced plant height, but melatonin treatment improved plant growth rate. Physiological parameter measurements revealed that the drought-induced decreases in maximum efficiency of photosystem II (PSII) photochemistry, the effective quantum yield of PSII, electron transfer rate, and photochemical quenching value caused by PEG6000 treatment were alleviated by melatonin treatment, which suggests a protective effect of melatonin on PSII. Comparative transcriptome analysis identified 447, 3982, 4526 and 3258 differentially expressed genes (DEGs) in the comparative groups plus-melatonin vs. minus-melatonin (no drought), drought vs. no drought (minus-melatonin), drought vs. no drought (melatonin) and plus-melatonin vs. minus-melatonin (drought), respectively. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis revealed that DEGs in the four comparative groups were involved in multiple metabolic processes and closely related to hormone signal transduction and transcription factors. Transcriptome data revealed that melatonin changed the expression pattern of most hormone signal transduction related DEGs induced by drought, and improved plant drought resistance by down-regulating the expression of linoleic acid catabolic enzyme genes. These results provide new insights into a probable mechanism of the melatonin-induced protection of photosynthesis and enhancement of drought tolerance in tomato plants

    Cyr61 Mediates Angiotensin II-Induced Podocyte Apoptosis via the Upregulation of TXNIP

    No full text
    Purpose. It is well documented that angiotensin II (Ang II) elevation promotes apoptosis of podocytes in vivo and vitro, but the potential mechanism is still oscular. The current study is aimed at probing into the assignment of cysteine-rich protein 61 (Cyr61) in Ang II-induced podocyte apoptosis. Methods. Podocytes were treated with Ang II (10-6 mol/L) for 48 hours to establish an injury model in vitro. Western blot assays were detected the expression of Cyr61, Cyt-c, Bax, and Bcl-2. Gene microarray was used to analyze the expression of mRNAs after treatment with Ang II. CRISPR/Cas9 technology was used to knock down Cyr61 and overexpress TXNIP gene, respectively. Results. The expression of Cyr61, TXNIP, Cyt-c, and Bax in podocytes treated with Ang II were upregulated, but the expression and apoptotic rates of Bcl-2 in podocytes were inhibited. The level of the above factors was not significantly different after the knockdown of Cyr61 with Ang II in podocytes. In Ang II group, when knocked down Cyr61, the expressed level of TXNIP, Cyt-c, and Bax was diminished after Ang II treatment; interestingly Bcl-2 expression and podocyte apoptotic rate were reduced. Under the stimulation of Ang II, the expression of Cyt-c and Bax were growing, whereas Bcl-2 was reduced, and the apoptotic rates were higher in the TXNIP overexpression group. Cyt-c and Bax were put on, whereas that of Bcl-2 was to be cut down when the Cyr61 was knockdown, and the apoptotic rates were gained in the TXNIP overexpression+Cyr61 knockdown group. Conclusions. The results of the study extrapolate that Cyr61 plays a dominant role in Ang II-induced podocyte apoptosis. Additionally, Cyr61 may mediate the Ang II-induced podocyte apoptosis by promoting the expression of TNXIP
    corecore