68 research outputs found
Novel tumor necrosis factor-related long non-coding RNAs signature for risk stratification and prognosis in glioblastoma
BackgroundTumor necrosis factor (TNF) is an inflammatory cytokine that can coordinate tissue homeostasis by co-regulating the production of cytokines, cell survival, or death. It widely expresses in various tumor tissues and correlates with the malignant clinical features of patients. As an important inflammatory factor, the role of TNFα is involved in all steps of tumorigenesis and development, including cell transformation, survival, proliferation, invasion and metastasis. Recent research has showed that long non-coding RNAs (lncRNAs), defined as RNA transcripts >200 nucleotides that do not encode a protein, influence numerous cellular processes. However, little is known about the genomic profile of TNF pathway related-lncRNAs in GBM. This study investigated the molecular mechanism of TNF related-lncRNAs and their immune characteristics in glioblastoma multiforme (GBM) patients.MethodsTo identify TNF associations in GBM patients, we performed bioinformatics analysis of public databases - The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA). The ConsensusClusterPlus, CIBERSORT, Estimate, GSVA and TIDE and first-order bias correlation and so on approaches were conducted to comprehensively characterize and compare differences among TNF-related subtypes.ResultsBased on the comprehensive analysis of TNF-related lncRNAs expression profiles, we constructed six TNF-related lncRNAs (C1RL-AS1, LINC00968, MIR155HG, CPB2-AS1, LINC00906, and WDR11-AS1) risk signature to determine the role of TNF-related lncRNAs in GBM. This signature could divide GBM patients into subtypes with distinct clinical and immune characteristics and prognoses. We identified three molecular subtypes (C1, C2, and C3), with C2 showing the best prognosis; otherwise, C3 showing the worst prognosis. Moreover, we assessed the prognostic value, immune infiltration, immune checkpoints, chemokines cytokines and enrichment analysis of this signature in GBM. The TNF-related lncRNA signature was tightly associated with the regulation of tumor immune therapy and could serve as an independent prognostic biomarker in GBM.ConclusionThis analysis provides a comprehensive understanding of the role of TNF-related characters, which may improve the clinical outcome of GBM patients
Comprehensive analysis of a long non‑coding RNA‑mediated competitive endogenous RNA network in glioblastoma multiforme
Design of a four-channel wave demultiplexer based on two-dimensional photonic crystals
Assessment of peripheral blood cell inflammatory markers in patients with chronic subdural hematoma
Pedestrian Recognition Based on Saliency Detection and Kalman Filter Algorithm in Aerial Video
Identification of immunologic subtype and prognosis of GBM based on TNFSF14 and immune checkpoint gene expression profiling
WNK3 promotes the invasiveness of glioma cell lines under hypoxia by inducing the epithelial-to-mesenchymal transition
Abstract
Background
The primary features of malignant glioma include high rates of mortality and recurrence, uncontrollable invasiveness, strong angiogenesis, and widespread hypoxia. The hypoxic microenvironment is an important factor affecting the malignant progression of glioma. However, the molecular mechanisms underlying glioma adaption in hypoxic microenvironments are poorly understood.
Objective
The work presented in this paper focuses on the role of WNK3 gene in glioma invasion under hypoxic conditions. Furthermore, we aim to explore its role in epithelial-to-mesenchymal transition (EMT).
Methods
ShRNA targeting WNK3 transfection was used to knockdown the WNK3 expression in U87 cells. We used western blot analysis to detect the relative expression of proteins in U87 cells. The effect of WNK3 on cell migration was explored using a transwell assay in the U87 cell line. We also evaluated WNK3 expression levels in glioma samples by immunohistochemistry analysis.
Results
WNK3 expression was significantly higher in high-grade (III and IV) gliomas than in low-grade (I and II) gliomas. WNK3 expression was up-regulated in U87 cells when cultured in a hypoxic environment in addition; WNK3 knockdown inhibited the invasion of U87 glioma cells by regulating the EMT, especially under hypoxic conditions.
Conclusion
These findings suggested that WNK3 plays an important role in the hypoxic microenvironment of glioma and might also be a candidate for therapeutic application in the treatment of glioma.
</jats:sec
NKCC1 involvement in the epithelial-to-mesenchymal transition is a prognostic biomarker in gliomas
Background
Gliomas are the most prevalent type of intracranial tumors. NKCC1 is an important regulator in tumor cell volume. We noticed that abnormally high NKCC1 expression resulted in changes in the shape and adhesion of glioma cells. However, little is known about the role of NKCC1 in the epithelial-mesenchymal transition (EMT) of gliomas. This study aims to clarify the biological function of NKCC1 in glioblastoma multiforme (GBM) progression.
Methods
Using data from The Cancer Genome Atlas (TCGA), we performed a Kaplan–Meier analysis on NKCC1 expression levels to estimate the rate of survival of mesenchymal GBM patients. The correlation between NKCC1 and EMT-related proteins was analyzed from the Gene Expression Profiling Interactive Analysis (GEPIA) server. We conducted Gene Set Enrichment Analysis (GSEA) to verify molecular signatures and pathways. We then studied the expression of NKCC1 in grade I–IV glioma tissue samples collected from patients using immunohistochemistry (IHC). Finally, we evaluated the effects of NKCC1 migration and invasion on the cellular behaviors of U251 cells using the transwell assay and western blots.
Results
High NKCC1 expression was associated with poor prognoses in mesenchymal GBM. Our results suggest a correlation between NKCC1 and EMT-protein markers: CDH2 and VIM. GSEA showed that gliomas, TGF-beta signaling and EMT were enriched in the NKCC1 high expression phenotype. Higher expression levels of NKCC1 in gliomas correlate with higher glioma grades. Transwell assay and western blot results demonstrated that the knockdown of NKCC1 led to a reduction in migration and invasion, while also inhibiting MMP-2 and MMP-9 expression in U251.
Conclusion
These results suggest that high expression of NKCC1 regulates EMT in gliomas, providing a new therapeutic strategy for addressing the spread of gliomas by inhibiting the spread of intracranial tumors.
</jats:sec
- …
