61 research outputs found
Blow-Up of Solutions to a Novel Two-Component Rod System
We consider a novel two-component rod system which is closely connected to the shallow water theory. The present work is mainly concerned with the blow-up mechanism of strong solutions; we establish new conditions in view of some special classes of initial value to guarantee finite time blow-up of solutions
C500 variants conveying complete mucosal immunity against fatal infections of pigs with Salmonella enterica serovar Choleraesuis C78-1 or F18+ Shiga toxin-producing Escherichia coli
Salmonella enterica serovar Choleraesuis (S. Choleraesuis) C500 strain is a live, attenuated vaccine strain that has been used in China for over 40 years to prevent piglet paratyphoid. However, this vaccine is limited by its toxicity and does not offer protection against diseases caused by F18+ Shiga toxin-producing Escherichia coli (STEC), which accounts for substantial economic losses in the swine industry. We recently generated a less toxic derivative of C500 strain with both asd and crp deletion (S. Choleraesuis C520) and assessed its efficacy in mice. In addition, we demonstrate that C520 is also less toxic in pigs and is effective in protecting pigs against S. Choleraesuis when administered orally. To develop a vaccine with a broader range of protection, we prepared a variant of C520 (S. Choleraesuis C522), which expresses rSF, a fusion protein comprised of the fimbriae adhesin domain FedF and the Shiga toxin-producing IIe B domain antigen. For comparison, we also prepared a control vector strain (S. Choleraesuis C521). After oral vaccination of pigs, these strains contributed to persistent colonization of the intestinal mucosa and lymphoid tissues and elicited both cytokine expression and humoral immune responses. Furthermore, oral immunization with C522 elicited both S. Choleraesuis and rSF-specific immunoglobulin G (IgG) and IgA antibodies in the sera and gut mucosa, respectively. To further evaluate the feasibility and efficacy of these strains as mucosal delivery vectors via oral vaccination, we evaluated their protective efficacy against fatal infection with S. Choleraesuis C78-1, as well as the F18+ Shiga toxin-producing Escherichia coli field strain Ee, which elicits acute edema disease. C521 conferred complete protection against fatal infection with C78-1; and C522 conferred complete protection against fatal infection with both C78-1 and Ee. Our results suggest that C520, C521, and C522 are competent to provide complete mucosal immune protection against fatal infection with S. Choleraesuis in swine and that C522 equally qualifies as an oral vaccine vector for protection against F18+ Shiga toxin-producing Escherichia coli
Advanced age is associated with increased adverse outcomes in patients undergoing middle cerebral artery stenting
PurposeThis study tried to evaluate whether advanced age has an increased incidence of major complications in patients undergoing MCA stenting.MethodsA total of 348 patients who underwent MCA stenting were reviewed from a prospectively maintained database. Ninety-day ischemic stroke, intracerebral hemorrhage, and death outcomes were compared among the young (≤40 years old), middle (41–60 years old) and old (≥61 years old) groups. Univariate analysis and multivariable logistic regression analysis were used to investigate different variables associated with 90-day major adverse events. Kaplan–Meier analysis was performed to determine long-term outcomes during follow-up.ResultsThe incidence of 90-day ischemic stroke was 9.26% in the old group, 2.86% in the middle group, and 0% in the young group (P = 0.024). The incidence of all 90-day major adverse events was 3.33% in patients ≤40 years old, 19.90% in patients 41–60 years old, and 24.07% in patients ≥61 years old, with statistical significance (P = 0.04). Advanced age was associated with increased 90-day ischemic stroke (OR = 1.074, 95% CI: 1.019–1.132, P = 0.007; adjusted OR: 1.071, 95% CI: 1.008–1.138, P = 0.026) and 90-day death (OR = 1.072, 95% CI: 1.012–1.135, P = 0.018; adjusted OR: 1.095, 95% CI: 1.015–1.182, P = 0.018). Meanwhile, advanced age was also associated with decreased long-term survival and ischemic stroke-free survival during follow-up.ConclusionOur data indicated that MCA stenting in elderly patients is associated with a high risk of adverse events and should be cautiously considered
Controlled synthesis of monodisperse gold nanorods with different aspect ratios in the presence of aromatic additives
This paper reports the synthesis of monodisperse gold nanorods (GNRs) via a simple seeded growth approach in the presence of different aromatic additives, such as 7-bromo-3-hydroxy-2-naphthoic acid (7-BrHNA), 3-hydroxy-2-naphthoic acid (HNA), 5-bromosalicylic acid (5-BrSA), salicylic acid (SA) or phenol (PhOH). Effects of the aromatic additives and hydrochloric acid (HCl) on the structure and optical properties of the synthesized GNRs were investigated. The longitudinal surface plasmon resonance (LSPR) peak wavelength of the resulting GNRs was found to be dependent on the aromatic additive in the following sequence: 5-BrSA (778 nm) > 7-BrHNA (706 nm) > SA (688 nm) > HNA (676 nm) > PhOH (638 nm) without addition of HCl, but this was changed to 7-BrHNA (920 nm) > SA (890 nm) > HNA (872 nm) > PhOH (858 nm) > 5-BrSA (816 nm) or 7-BrHNA (1005 nm) > PhOH (995 nm) > SA (990 nm) > HNA (980 nm) > 5-BrSA (815 nm) with the addition of HCl or HNO3 respectively. The LSPR peak wavelength was increased with the increasing concentration of 7-BrHNA without HCl addition, however, there was a maximum LSPR peak wavelength when HCl was added. Interestingly, the LSPR peak wavelength was also increased with amount of HCl added. The results presented here thus established a simple approach to synthesize monodisperse GNRs of different LSPR wavelength
Coal Pillar Size Determination and Surrounding Rock Control for Gob-Side Entry Driving in Deep Soft Coal Seams
In response to the large-scale instability failure problem of designing coal pillars and support systems for gob-side entry driving (GSED) in high-stress soft coal seams in deep mines, the main difficulties in the surrounding rock control of GSED were analyzed. The relationship between the position of the main roof breaking line, together with the width of the limit equilibrium zone and a reasonable size for the coal pillar, were quantified through theoretical calculations. The theoretical calculations showed that the maximum and minimum widths of the coal pillar are 8.40 m and 5.47 m, respectively. A numerical simulation was used to study the distribution characteristics and evolution laws of deviatoric stress and plastic failure fields in the GSED surrounding rock under different coal pillar sizes. Theoretical analysis, numerical simulation, and engineering practice were comprehensively applied to determine a reasonable size for narrow coal pillars for GSED in deep soft coal seams, which was 6.5 m. Based on the 6.5 m coal pillar size, the distribution of deviatoric stress and plastic zones in the surrounding rock of the roadway, at different positions of the advanced panel during mining, was simulated, and the range of roadway strengthening supports for the advanced panel was determined as 25 m. The plasticization degree of the roof, entity coal and coal pillar, and the boundary line position of the peak deviatoric stress zone after the stability of the excavation were obtained. Drilling crack detection was conducted on the surrounding rock of the GSED roof and rib, and the development range and degree of the crack were obtained. The key areas for GSED surrounding rock control were clarified. Joint control technology for surrounding rock is proposed, which includes a combination of a roof channel steel anchor beam mesh, a rib asymmetric channel steel truss anchor cable beam mesh, a grouting modification in local fractured areas and an advanced strengthening support with a single hydraulic support. The engineering practice showed that the selected 6.5 m size for narrow coal pillars and high-strength combined reinforcement technology can effectively control large deformations of the GSED surrounding rock
Control Techniques for Gob-Side Entry Driving in an Extra-Thick Coal Seam with the Influence of Upper Residual Coal Pillar: A Case Study
In multi-seam mining, the residual coal pillar (RCP) in the upper gob has an important influence on the layout of the roadway in the lower coal seam. At present, few papers have studied the characteristics of the surrounding rock of gob-side entry driving (GED) with different coal pillar widths under the influence of RCP. This research contributes to improving the recovery rate of the extra-thick coal seam under this condition. The main research contents were as follows: (1) The mechanical parameters of the rock and coal mass were obtained using laboratory experiments coupled with Roclab software. These parameters were substituted into the established main roof structure mechanics model to derive the breakage position of the main roof with the influence of RCP, and the rationality of the calculation results was verified by borehole-scoping. (2) Based on numerical simulation, the evolution laws of the lateral abutment stress in the lower working face at different relative distances to the RCP were studied. FLAC3D was used to study the whole space-time evolution law of deviatoric stress and plastic zone of GED during driving and retreating periods with various coal pillar widths under the influence of RCP. (3) The plasticization factor P was introduced to quantify the evolution of the plastic zone in different subdivisions of the roadway surrounding rock, so as to better evaluate the bearing performance of the surrounding rock, which enabled a more effective determination of the reasonable coal pillar width. The field application results showed that it was feasible to set up the gob-side entry with an 8 m coal pillar below the RCP. The targeted support techniques with an 8 m coal pillar could effectively control the surrounding rock deformation
Control Techniques for Gob-Side Entry Driving in an Extra-Thick Coal Seam with the Influence of Upper Residual Coal Pillar: A Case Study
In multi-seam mining, the residual coal pillar (RCP) in the upper gob has an important influence on the layout of the roadway in the lower coal seam. At present, few papers have studied the characteristics of the surrounding rock of gob-side entry driving (GED) with different coal pillar widths under the influence of RCP. This research contributes to improving the recovery rate of the extra-thick coal seam under this condition. The main research contents were as follows: (1) The mechanical parameters of the rock and coal mass were obtained using laboratory experiments coupled with Roclab software. These parameters were substituted into the established main roof structure mechanics model to derive the breakage position of the main roof with the influence of RCP, and the rationality of the calculation results was verified by borehole-scoping. (2) Based on numerical simulation, the evolution laws of the lateral abutment stress in the lower working face at different relative distances to the RCP were studied. FLAC3D was used to study the whole space-time evolution law of deviatoric stress and plastic zone of GED during driving and retreating periods with various coal pillar widths under the influence of RCP. (3) The plasticization factor P was introduced to quantify the evolution of the plastic zone in different subdivisions of the roadway surrounding rock, so as to better evaluate the bearing performance of the surrounding rock, which enabled a more effective determination of the reasonable coal pillar width. The field application results showed that it was feasible to set up the gob-side entry with an 8 m coal pillar below the RCP. The targeted support techniques with an 8 m coal pillar could effectively control the surrounding rock deformation
Tumor Microenvironment-Responsive Drug Delivery Based on Polymeric Micelles for Precision Cancer Therapy: Strategies and Prospects
In clinical practice, drug therapy for cancer is still limited by its inefficiency and high toxicity. For precision therapy, various drug delivery systems, including polymeric micelles self-assembled from amphiphilic polymeric materials, have been developed to achieve tumor-targeting drug delivery. Considering the characteristics of the pathophysiological environment at the drug target site, the design, synthesis, or modification of environmentally responsive polymeric materials has become a crucial strategy for drug-targeted delivery. In comparison to the normal physiological environment, tumors possess a unique microenvironment, characterized by a low pH, high reactive oxygen species concentration, hypoxia, and distinct enzyme systems, providing various stimuli for the environmentally responsive design of polymeric micelles. Polymeric micelles with tumor microenvironment (TME)-responsive characteristics have shown significant improvement in precision therapy for cancer treatment. This review mainly outlines the most promising strategies available for exploiting the tumor microenvironment to construct internal stimulus-responsive drug delivery micelles that target tumors and achieve enhanced antitumor efficacy. In addition, the prospects of TME-responsive polymeric micelles for gene therapy and immunotherapy, the most popular current cancer treatments, are also discussed. TME-responsive drug delivery via polymeric micelles will be an efficient and robust approach for developing clinical cancer therapies in the future
Kudzu: An Invasive Plant or a Sustainable Resource
Kudzu (Pueraria lobata (Willd.) Ohwi) is a fast growing leguminous vine plant that has strong reproductive ability and low requirements on its growing conditions. It has been considered an invasive plant in some places because of its aggressive growth, which can destroy the habitat for native plants and animals. However, its strong environmental adaptability makes it easily cultivated as a sustainable resource. Kudzu can also keep soil from washing away and play an important role in ecological protection. Kudzu has had numerous practical uses in our daily lives since ancient times. For example, its root, stem, flower and pod are used in traditional Chinese medicine. Its root is a healthy food. And its leaf is used as fodder and forage for livestock. Moreover, some recent studies on kudzu have found that it is in rich of bioactive ingredients, especially isoflavones, which further broadens its uses in medicine, healthy food, and cosmetics industries. Its high starch and cellulose content makes it a promising feedstock for biofuel production and paper preparation. This editorial will give a brief discussion on kudzu and its comprehensive utilization
- …