38 research outputs found

    DragNUWA: Fine-grained Control in Video Generation by Integrating Text, Image, and Trajectory

    Full text link
    Controllable video generation has gained significant attention in recent years. However, two main limitations persist: Firstly, most existing works focus on either text, image, or trajectory-based control, leading to an inability to achieve fine-grained control in videos. Secondly, trajectory control research is still in its early stages, with most experiments being conducted on simple datasets like Human3.6M. This constraint limits the models' capability to process open-domain images and effectively handle complex curved trajectories. In this paper, we propose DragNUWA, an open-domain diffusion-based video generation model. To tackle the issue of insufficient control granularity in existing works, we simultaneously introduce text, image, and trajectory information to provide fine-grained control over video content from semantic, spatial, and temporal perspectives. To resolve the problem of limited open-domain trajectory control in current research, We propose trajectory modeling with three aspects: a Trajectory Sampler (TS) to enable open-domain control of arbitrary trajectories, a Multiscale Fusion (MF) to control trajectories in different granularities, and an Adaptive Training (AT) strategy to generate consistent videos following trajectories. Our experiments validate the effectiveness of DragNUWA, demonstrating its superior performance in fine-grained control in video generation. The homepage link is \url{https://www.microsoft.com/en-us/research/project/dragnuwa/

    Using Left and Right Brains Together: Towards Vision and Language Planning

    Full text link
    Large Language Models (LLMs) and Large Multi-modality Models (LMMs) have demonstrated remarkable decision masking capabilities on a variety of tasks. However, they inherently operate planning within the language space, lacking the vision and spatial imagination ability. In contrast, humans utilize both left and right hemispheres of the brain for language and visual planning during the thinking process. Therefore, we introduce a novel vision-language planning framework in this work to perform concurrent visual and language planning for tasks with inputs of any form. Our framework incorporates visual planning to capture intricate environmental details, while language planning enhances the logical coherence of the overall system. We evaluate the effectiveness of our framework across vision-language tasks, vision-only tasks, and language-only tasks. The results demonstrate the superior performance of our approach, indicating that the integration of visual and language planning yields better contextually aware task execution.Comment: 19 pages, 13 figure

    Adenoid lymphocyte heterogeneity in pediatric adenoid hypertrophy and obstructive sleep apnea

    Get PDF
    IntroductionAdenoid hypertrophy is the main cause of obstructive sleep apnea in children. Previous studies have suggested that pathogenic infections and local immune system disorders in the adenoids are associated with adenoid hypertrophy. The abnormalities in the number and function of various lymphocyte subsets in the adenoids may play a role in this association. However, changes in the proportion of lymphocyte subsets in hypertrophic adenoids remain unclear.MethodsTo identify patterns of lymphocyte subsets in hypertrophic adenoids, we used multicolor flow cytometry to analyze the lymphocyte subset composition in two groups of children: the mild to moderate hypertrophy group (n = 10) and the severe hypertrophy group (n = 5).ResultsA significant increase in naïve lymphocytes and a decrease in effector lymphocytes were found in severe hypertrophic adenoids.DiscussionThis finding suggests that abnormal lymphocyte differentiation or migration may contribute to the development of adenoid hypertrophy. Our study provides valuable insights and clues into the immunological mechanism underlying adenoid hypertrophy

    Interface engineering towards transition metal based nanocomposites for water splitting

    Full text link
    Hydrogen (H2) is a promising energy source to replace fossil fuels and the key to solving current energy and environment problems. Hydrogen production from water splitting via photocatalysis or electrolysis is considered to be an economical and environmentally friendly approach to convert clean energy into chemical fuels. The main difficulty of water splitting is the lack of low-cost, stable and efficient catalysts. The works presented in this thesis are focused on the development of highly efficient noble metal free catalysts for both hydrogen evolution and oxygen evolution reactions via photocatalytic and electrocatalytic water splitting. In these multi-step processes, more than one component are generally required to accomplish light absorption and charge separation (for photocatalytic reaction), charge carrier transportation and surface redox reaction. The overall efficiency of the process is strongly affected by the interplay among the components as well as the interfacial properties. Therefore, the overall aim of this thesis works is to assemble appropriate functional components with engineered interfaces to achieve remarkably enhanced photocatalytic and electrocatalytic performances for water splitting. In the first part of the research works, MoP particulates were synthesized and dispersed into nanosized particles using probe sonicator. The MoP nanoparticle as a co-catalyst exhibits 4 times of improved photocatalytic hydrogen evolution reaction (HER) activity compared to the bulk form due to the small particle size with increased surface area and better integration with the semiconductor light absorber, CdS quantum dots (QDs). The nanosized dimension of CdS QDs facilitate the charge migration from bulk to surface where holes are consumed by lactic acid. More importantly, the good dispersion of CdS QDs in solution allows them to be trapped in the cluster of MoP nanoparticles. An intimate interface between CdS QDs and MoP is thus formed, which is favorable for the efficient charge transfer from CdS QDs to MoP. Besides, the metallic property and good HER activity of MoP lead to efficient and stable H2 evolution. Next, to further reduce the particle size of metal phosphides and improve the interface between light absorber and co-catalysts, metal oxide (ZnO) was introduced as a low-cost metal oxide support to disperse and stabilize CoP on its surface. The interface between metal oxides and CdS QDs is formed via electrostatic interactions since ZnO is positively charged whereas CdS QDs is negatively charged. Besides, the band structure alignment between ZnO and CdS QDs facilitate the charge transfer from CdS QDs to ZnO, which was further transferred to CoP. The excellent HER activity of CoP and the engineered interface result in the highly efficient and stable H2 production under visible light irradiation. Apparent quantum efficiency of this system can reach as high as 66% at 420 nm and no activity loss is observed for this system after 144 h photocatalytic reaction. The third part of the research work is focused on the development of a noble metal free HER electrocatalyst that has an activity close to that of Pt. CoNA/PDA (NA: Nitrilotriacetic acid; PDA: Polydopamine) core/shell nanowires were first synthesized by coating PDA on the surface of CoNA nanowires (NWs). N, P co-doped carbon nanotube is obtained through phosphidation of CoNA/PDA NWs with subsequent pyrolysis in N2 atmosphere. CoNA NWs decomposed to Co nanoparticles wrapped by several graphene layers. CoP is formed at the cobalt/carbon interface. After activation, the wrapped nanoparticles become accessible and less stable Co nanoparticles are removed by acidic solution. The CoP nanoparticles stabilized by NCoP bonding are exposed which exhibit a high HER activity and stability. Lastly, research efforts of this thesis work were also spent to tackle the other half of the water splitting reaction, oxygen evolution reaction (OER), since the sluggish kinetics of OER is the bottleneck of the overall performance of water splitting. In this part of the work, a promising OER catalyst, Ni-Fe layered double hydroxide (LDH) was chosen and its intrinsic high OER activity was harnessed by blending ultra-fine NiFe-LDH nanocrystals with conductive carbon. The NiFe-LDH/C hybrid was fabricated by a novel one-pot solvothermal method using molecule precursors of metal cations and organic ligand. The resultant NiFe-LDH/C nanosheet consists of poorly crystalized NiFe-LDH (< 5 nm) interconnected with N doped carbon nanodomains. The in situ formation of both components leads to a self-confined growth and fine blending of NiFe-LDH nanocrystals and carbon domains. Such a unique structure results in improved electrical conductivity, increased active sites and enhanced electrochemical active surface area. In addition, the strong interaction between metal centers and carbon leads to the local electronic structure modification of metal centers. These factors contribute together to the development of a highly efficient and stable NiFe-LDH based OER catalyst. In summary, the research efforts in this thesis were spent on designing efficient and noble metal free photocatalysts and electrocatalysts for water splitting reactions. In particular, engineering suitable interfaces is a key focus. Detailed materials characterization and structural analyses were carried out to understand the key factors contributing to the high performances of the catalysts. Through such efforts, several promising transition-metal based catalysts have been developed with high efficiency for HER and OER reactions. It is believed that the findings from this work would contribute to the advancement of the energy research field and the development of practical catalysts for water splitting utilizing solar energy directly or electricity from clean energy.Doctor of Philosophy (SCBE

    Recent progress in g-C3N4 based low cost photocatalytic system: activity enhancement and emerging applications

    Full text link
    Graphitic C3N4 (g-C3N4) has continuously attracted attention since it was reported as a metal-free semiconductor for water splitting. However, its ability to evolve hydrogen from water is significantly dependent on the use of noble metal co-catalyst, mainly Pt. In recent years, good progress has been achieved in developing co-catalysts containing earth abundant elements only for constructing low cost and efficient g-C3N4 based photocatalytic systems. Besides, exfoliation of bulk g-C3N4 into two dimensional g-C3N4 nanosheets offers large surface area and exposed active sites, which are beneficial for activity enhancement. Furthermore, oxygen evolution and CO2 photoreduction over g-C3N4 have gained increasing interests due to the demand to achieve overall water splitting and conversion of CO2 into chemicals and fuels. In this mini-review, we will briefly summarize the latest research works on g-C3N4 based photocatalytic systems during the last three years with emphasis on the progress achieved in enhancing the hydrogen evolution activity of g-C3N4 by loading noble metal free co-catalysts, exfoliating bulk g-C3N4 into nanosheets, and applying the g-C3N4 system in photocatalytic O2 evolution and CO2 reduction.Published versio

    SYNTHESIS AND STRUCTURES OF TRIS

    Full text link

    Acid-Assisted Ball Mill Synthesis of Carboxyl-Functional-Group-Modified Prussian Blue as Sodium-Ion Battery Cathode

    Full text link
    Prussian blue attracts the attention of many researchers as a promising candidate for use in sodium-ion battery cathodes due to its open frameworks and high working potential. However, the interstitial water in its crystal structure and its poor electronic conductivity limits its performance in practical sodium-ion batteries. Here, acid-assisted ball milling synthesis was employed as a versatile method for the production of surface-modified Prussian blue. With (CH3COO)2Fe being used as the raw material, the Prussian blue produced using ball milling synthesis was modified by the carboxyl functional group on its surface, which resulted in lower interstitial water content and enhanced electrochemical cycling performance. In addition, ball milling synthesis provided the as-prepared Prussian blue with a large surface area, improving its electrochemical rate performance. When used as the cathode of sodium-ion batteries, as-prepared Prussian blue delivered a specific capacity of 145.3 mAh g&minus;1 at 0.2 C and 113.7 mAh g&minus;1 at 1 C, maintaining 54.5% of the initial capacity after 1000 cycles at 1 C (1 C = 170 mA g&minus;1). Furthermore, a solid-state sodium-ion battery was mounted, with as-prepared Prussian blue being employed as the cathode and Na metal as the anode, which delivered a high specific capacity of 128.7 mAh g&minus;1 at 0.2 C. The present study put forward an effective solution to overcome the limitations of Prussian blue for its commercial application

    Microstructures and Antioxidation of W Self-Passivating Alloys: Synergistic Effect of Yttrium and Milling Time

    Full text link
    Tungsten and its alloys are widely recognized as key components in high-temperature environments. In this study, self-passivating W-Si-xY alloys with varying Y content were prepared using mechanical alloying (MA) and spark plasma sintering (SPS). The synergistic effects of Y content and milling time on the microstructures and oxidation resistance of the alloys were revealed. This study found that the oxidation resistance of the alloys increased as the Y content increased. However, the effect of milling time on oxidation resistance was complex. For W-Si-xY alloys with low Y content (0Y and 2Y), the oxidation resistance decreased with increasing milling time. In contrast, for W-Si-xY alloys with high Y content (4Y and 6Y), the oxidation resistance increased with increasing milling time. This enhanced oxidation resistance is due to the microstructural changes in the protective composite layer, including the size and distribution of W5Si3, Y2Si2O7 aggregates, and W-Y-O melt. The thickness of the oxide layer on the W-Si-6Y alloy after being oxidized at 1000 °C for 2 h was only 70.7 μm, demonstrating its superior oxidation resistance
    corecore