45 research outputs found

    Finite-time adaptive synchronization of fractional-order delayed quaternion-valued fuzzy neural networks

    Get PDF
    Based on direct quaternion method, this paper explores the finite-time adaptive synchronization (FAS) of fractional-order delayed quaternion-valued fuzzy neural networks (FODQVFNNs). Firstly, a useful fractional differential inequality is created, which offers an effective way to investigate FAS. Then two novel quaternion-valued adaptive control strategies are designed. By means of our newly proposed inequality, the basic knowledge about fractional calculus, reduction to absurdity as well as several inequality techniques of quaternion and fuzzy logic, several sufficient FAS criteria are derived for FODQVFNNs. Moreover, the settling time of FAS is estimated, which is in connection with the order and initial values of considered systems as well as the controller parameters. Ultimately, the validity of obtained FAS criteria is corroborated by numerical simulations

    Expression map of a complete set of gustatory receptor genes in chemosensory organs of \u3cem\u3eBombyx mori\u3c/em\u3e

    Get PDF
    Most lepidopteran species are herbivores, and interaction with host plants affects their gene expression and behavior as well as their genome evolution. Gustatory receptors (Grs) are expected to mediate host plant selection, feeding, oviposition and courtship behavior. However, due to their high diversity, sequence divergence and extremely low level of expression it has been difficult to identify precisely a complete set of Grs in Lepidoptera. By manual annotation and BAC sequencing, we improved annotation of 43 gene sequences compared with previously reported Grs in the most studied lepidopteran model, the silkworm, Bombyx mori, and identified 7 new tandem copies of BmGr30 on chromosome 7, bringing the total number of BmGrs to 76. Among these, we mapped 68 genes to chromosomes in a newly constructed chromosome distribution map and 8 genes to scaffolds; we also found new evidence for large clusters of BmGrs, especially from the bitter receptor family. RNA-seq analysis of diverse BmGr expression patterns in chemosensory organs of larvae and adults enabled us to draw a precise organ specific map of BmGr expression. Interestingly, most of the clustered genes were expressed in the same tissues and more than half of the genes were expressed in larval maxillae, larval thoracic legs and adult legs. For example, BmGr63 showed high expression levels in all organs in both larval and adult stages. By contrast, some genes showed expression limited to specific developmental stages or organs and tissues. BmGr19 was highly expressed in larval chemosensory organs (especially antennae and thoracic legs), the single exon genes BmGr53 and BmGr67, were expressed exclusively in larval tissues, the BmGr27–BmGr31 gene cluster on chr7 displayed a high expression level limited to adult legs and the candidate CO2 receptor BmGr2 was highly expressed in adult antennae, where few other Grs were expressed. Transcriptional analysis of the Grs in B. mori provides a valuable new reference for finding genes involved in plant-insect interactions in Lepidoptera and establishing correlations between these genes and vital insect behaviors like host plant selection and courtship for mating

    Effect of grain and secondary phase morphologies in the mechanical and damping behavior of Al7075 alloys

    Get PDF
    The present study evaluates the role of the microstructure in the static and dynamic mechanical behavior of as-cast Al7075 alloy promoted by ultrasonic treatment (US) during solidification. The characterization of samples revealed that US treatment promoted grain and intermetallics refinement, changed the shape of the intermetallic phases (equilibrium phases of soluble M and/or T (Al, Cu, Mg, Zn) and their insoluble Al-Cu-Fe compounds) and lead to their uniform distribution along the grain boundaries. Consequently, the mechanical properties and damping capacity above critical strain values were enhanced by comparison with values obtained for castings produced without US vibration. This results suggest that the grain and secondary phases refinement by US can be a promising solution to process materials to obtain high damping and high strength characteristics.This research was supported by FEDER/COMPETE funds and by national funds through FCT - Portuguese Foundation for Science and Technology and was developed on the aim of the research Post-Doctoral grant SFRH/BPD/76680/2011. Also, this work has been supported by the FCT in the scope of the project: UID/EEA/04436/2013.info:eu-repo/semantics/publishedVersio

    A two‐stage solution method for the design problem of medium‐thick plates in steel plants

    No full text
    Abstract The medium‐thick plate is an important type of steel product widely used in construction and engineering machinery. The orders are usually characterised by multiple specifications and small quantities. The plate design is an important part in the production process of medium‐thick plate, which includes the combination of sub‐plates and the size design of the motherboard. A multi‐objective model for medium‐thick plate design is proposed based on the 2D bin packing model, comprehensively considering spatial and size constraints of the plate production. A two‐stage genetic algorithm (TSGA) is developed to solve the proposed model. In the first stage, an improved GA is used to optimise the corresponding relationship between the sub‐plates and the slab, as well as the size of the motherboard. In the second stage, an exact algorithm based on the integer programming model is applied to calculate the order layout to minimise the surplus materials. To validate the proposed method, computational experiments are conducted based on actual production data from a steel plant. The experimental results show the effectiveness of the TSGA algorithm in solving the plate design problem

    Dynamics of Water Use Efficiency of Coniferous and Broad-Leaved Mixed Forest in East China

    No full text
    The aim of our study is to understand the patterns of variation in water use efficiency (WUE) in coniferous and broad-leaved mixed forest ecosystems across multiple scales and to identify its main controlling factors. We employ the eddy covariance method to gather data from 2017, 2018, and 2020, which we use to calculate the gross primary productivity and evapotranspiration of these forests in East China and to determine WUE at the ecosystem level. The mean daily variation in WUE ranges from 4.84 to 7.88 gC kg−1 H2O, with a mean value of 6.12 gC kg−1 H2O. We use ridge regression analysis to ascertain the independent effect of environmental factors on WUE variation. We find that WUE responds differently to environmental factors at different time scales. In mixed conifer ecosystems, temperature and relative humidity emerge as the most significant environmental factors influencing WUE variability. Especially at the seasonal scale, temperature and relative humidity can explain more than 51% of the WUE variation. Our results underscore the varied effects of environmental factors on WUE variation across different time scales and aid in predicting the response of WUE to climate change in coniferous and broad-leaved mixed forest ecosystems

    Hot Corrosion Behavior of Sputtered Nanocrystalline Coating with Yttrium Addition at 900 °C

    No full text
    The high temperature corrosion behavior of sputtered nanocrystalline K38 coating with and without yttrium addition under mixed molten salt film in air was investigated. Accelerated corrosion occurred on the coating without yttrium (Y) addition locally after 60 h exposure at 900 °C, which resulted in negative weight gain in kinetics. A uniform and protective alumina scale formed on surface of the coating containing yttrium in comparison. Y enriched particle as corrosion product was observed on the top of alumina scale. The results indicated the beneficial influence of Y on the chemical stability of the protective scale in the presence of chloride. The mechanism was discussed

    Properties of ABS/Organic-Attapulgite Nanocomposites Parts Fabricated by Fused Deposition Modeling

    No full text
    The paper discusses the mechanical and thermal performance manifested in natural nanorods attapulgite (ATP) reinforced Acrylonitrile butadiene styrene (ABS) nanocomposites in the process of fused deposition modeling (FDM). Molten extrusion technique was taken to manufacture the filaments of ABS/ organic-attapulgite ( OAT) nanocomposites with different mass fraction and the printing operation was made by one commercial FDM three-dimensional (3D) printer. Results indicate that the mechanical performance of these FDM 3D printed specimens are improved obviously via the introduction of OAT, and tensile strength of the ABS/OAT nanocomposites parts with only 2 wt% OAT addition is enhanced by 48.1%. At the same time, the addition OAT can reduce the linear expansion coefficient and creep flexibility, and improve the thermal stability and dimensional accuracy of these FDM 3D printed parts

    Dynamic stability and spatiotemporal parameters during turning in healthy young adults

    No full text
    Abstract Background and purpose Turning while walking has a frequent occurrence in daily life. Evaluation of its dynamic stability will facilitate fall prevention and rehabilitation scheme. This knowledge is so limited that we set it as the first aim of this study. Another aim was to investigate spatiotemporal parameters during turning. Methods Fifteen healthy young adults were instructed to perform straight walking, 45° step turn to the left and 45° spin turn to the right at natural speed. Dynamic stability was measured by margin of stability (MoS) in anterior, posterior, left and right direction at each data point where significant differences were detected using 95% bootstrap confidence band. Common spatiotemporal parameters were computed in each condition subdivided into approach, turn and depart phases. Results Results showed that minimum anterior MoS appeared at middle of swing while minimum lateral MoS at contralateral heel strike in all conditions. Posterior MoS decreased before middle of turn phase in spin whereas after middle of turn phase in step. Lateral MoS and stride width declined in turn phase of spin while in depart of step. Spin had a long step and stride length. Long swing phases were observed in turns. Conclusions These data help explain that people are most likely to fall forward at middle of swing and to fall toward the back and the support side at heel strike. Our findings demonstrate that instability mainly exist in turn phase of spin and depart phase of step turn

    Thermal and mechanical properties of polyamide 12/graphene nanoplatelets nanocomposites and parts fabricated by fused deposition modeling

    No full text
    The printable polyamide 12 (PA12) nanocomposite filaments with 6 wt % graphene nanoplatelets (GNPs) for fused deposition modeling (FDM) were prepared by melting compounding and smoothly printed via a commercial FDM three-dimensional (3D) printer. The thermal conductivity () and elastic modulus (E) of 3D printed PA12/GNPs parts along to the printing direction had an increase by 51.4% and 7% than that of compression molded parts, which is due to the GNPs preferentially aligning along to the printing direction. Along with these improved properties, ultimate tensile strength of 3D printed PA12/GNPs parts was well maintained. These results indicate that FDM is a new way to achieve PA12/GNPs parts with enhanced over compression moulding, which could contribute to realize efficient and flexible heat management for a wide range of applications. (c) 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45332

    Environmental Influences on <i>Illex argentinus</i> Trawling Grounds in the Southwest Atlantic High Seas

    No full text
    To understand the spatial temporal distribution characteristics of Illex argentinus caught by trawl fishing vessels in the Southwestern Atlantic Ocean and their relationship with key marine environmental factors, this study analyzed the temporal and spatial changes in the fishing ground center of trawl vessels at the ten-day scale from December 2019 to May 2022, combining Chinese trawl fishing log data marine environmental data with satellite remote sensing marine environmental data. Utilizing the Maxent model, ten-day intervals were used as the temporal scale, and ten marine environmental factors, including sea surface temperature, sea surface height, sea surface salinity, chlorophyll concentration, temperature at 50 m and 100 m depth, and the meridional and zonal velocities of ocean currents were quantitatively analyzed to explore the correlation between the spatial distribution of catch and environmental factors. The study reveals that the trawl fishing grounds for Illex argentinus are divided into southern and northern grounds. The southern grounds first appear near 45°20′ S in December, gradually moving southeastward in February and March. The northern grounds do not appear until April, near 42° S in the high seas. On the ten-day time scale, the central fishing grounds of Illex argentinus show significant spatial variability but minor interannual differences. The Maxent model results indicate that sea surface temperature and chlorophyll a concentration are the key environmental factors influencing the spatial and temporal variability of the high seas trawl fishing grounds for most of the time, with high environmental contribution rates during the fishing season. While the range of suitable habitats with an HSI > 0.6 identified by the Maxent model varies significantly between years, a pattern is observed where the range expands at the start and end of the fishing season and contracts during the peak fishing season. This suggests that a more concentrated range of suitable habitats is conducive to accurate predictions of trawl fishing grounds, enabling efficient fishing operations
    corecore