23 research outputs found

    Sustainable ultra‐strong thermally conductive wood‐based antibacterial structural materials with anti‐corrosion and ultraviolet shielding

    Get PDF
    In light of the uprising global development on sustainability, an innovative and environmental friendly wood-based material derived from natural pinewood has been developed as a high-performance alternative to petrochemical-based materials. The wood-based functional material, named as BC-CaCl2, is synthesized through the coordination of carboxyl groups (−COOH) present in pinewood with calcium ions (Ca2+), which facilitates the formation of a high-density cross-linking structure through the combined action of intermolecular hydrogen bonds. The as-prepared BC-CaCl2 exhibits excellent tensile strength (470.5 MPa) and flexural strength (539.5 MPa), establishing a robust structural basis for the materials. Meanwhile, BC-CaCl2 shows good water resistance, thermal conductivity, thermal stability, UV resistance, corrosion resistance, and antibacterial properties. BC-CaCl2 represents a viable alternative to petrochemical-based materials. Its potential application areas include waterproof enclosure structure of buildings, indoor underfloor heating, outdoor UV resistant protective cover, and anti-corrosion materials for installation engineering, and so forth

    Multi-Frequency Signal Detection Based on Frequency Exchange and Re-Scaling Stochastic Resonance and Its Application to Weak Fault Diagnosis

    No full text
    Mechanical fault diagnosis usually requires not only identification of the fault characteristic frequency, but also detection of its second and/or higher harmonics. However, it is difficult to detect a multi-frequency fault signal through the existing Stochastic Resonance (SR) methods, because the characteristic frequency of the fault signal as well as its second and higher harmonics frequencies tend to be large parameters. To solve the problem, this paper proposes a multi-frequency signal detection method based on Frequency Exchange and Re-scaling Stochastic Resonance (FERSR). In the method, frequency exchange is implemented using filtering technique and Single SideBand (SSB) modulation. This new method can overcome the limitation of "sampling ratio" which is the ratio of the sampling frequency to the frequency of target signal. It also ensures that the multi-frequency target signals can be processed to meet the small-parameter conditions. Simulation results demonstrate that the method shows good performance for detecting a multi-frequency signal with low sampling ratio. Two practical cases are employed to further validate the effectiveness and applicability of this method

    A Novel Magnetoelastic Immunosensor for Ultrasensitively Detecting Carcinoembryonic Antigen

    No full text
    Abstract A novel wireless immunosensor is developed for the ultra-sensitive detection of carcinoembryonic antigen. The optimum dimension of the microchips, as magnetoelastic sensitive units, was evaluated by simulation and experiments. The unique effects signal amplification and biocompatibility of gold particles contribute to the stability and sensitivity of the sensor. Furthermore, to enhance sensitivity, the working concentrations of antibody and BSA are selected to be 50 mg/mL and 0.1%, respectively. Atom force microscope imaging sheds light on the biological analysis. The Nano-magnetoelastic immunosensor exhibits a linear response to the logarithm of carcinoembryonic antigen (CEA) concentrations ranging from 0.1 to 100 ng/mL, with a detection limit of 2.5 pg/mL. The designed biosensor has merits of excellent stability and sensitivity towards CEA

    High-performance flexible all-solid-state asymmetric supercapacitors based on binder-free MXene/cellulose nanofiber anode and carbon cloth/polyaniline cathode

    No full text
    The search for wearable electronics has been attracted great efforts, and there is an ever-growing demand for all-solid-state flexible energy storage devices. However, it is a challenge to obtain both positive and negative electrodes with excellent mechanical strength and matching positive and negative charges to achieve high energy densities and operating voltages to satisfy practical application requirements. Here, flexible MXene (Ti3C2Tx)/cellulose nanofiber (CNF) composite film negative electrodes (MCNF) were fabricated with a vacuum filtration method, as well as positive electrodes (CP) by combining polyaniline (PANI) with carbon cloth (CC) using an in-situ polymerization method. Both positive and negative free-standing electrodes exhibited excellent electrochemical behavior and bendable/foldable flexibility. As a result, the all-pseudocapacitance asymmetric device of MCNF//CP assembled with charge-matched between anode and cathode achieves an extended voltage window of 1.5 V, high energy density of 30.6 WhKg-1 (1211 WKg-1), and 86 capacitance retention after 5000 cycles, and the device maintains excellent bendability, simultaneously. This work will pave the way for the development of all-pseudocapacitive asymmetric supercapacitors (ASC) with simultaneously preeminent mechanical properties, high energy density, and wide operating voltage window

    MXene Enhanced 3D Needled Waste Denim Felt for High-Performance Flexible Supercapacitors

    No full text
    Highlights An ultralight and flexible supercapacitor is developed by an effective 3D fabrication method that uses MXene to fabricate waste denim felt through needling and carbonization. The electrodes have a maximum specific capacitance of 1748.5 mF cm−2 and demonstrate remarkable cycling stability with more than 94% after 15,000 galvanostatic charge/discharge cycles The loaded more MXene onto Z-directional fiber bundles results in enhanced specific capacitance, energy density and power density of supercapacitors

    LncRNA FTO-IT1 promotes glycolysis and progression of hepatocellular carcinoma through modulating FTO-mediated N6-methyladenosine modification on GLUT1 and PKM2

    No full text
    Abstract Background Long non-coding RNAs (LncRNAs) have been extensively studied to play essential roles in tumor progression. However, more in-depth studies are waiting to be solved on how lncRNAs regulate the progression of hepatocellular carcinoma (HCC). Methods Different expression levels of lncRNAs in HCC cells were compared by analysis of Gene Expression Omnibus and The Cancer Genome Atlas databases. The effects of lncRNA FTO Intronic Transcript 1 (FTO-IT1) on HCC cells were assessed by gain- and loss-of-function experiments. Colony formation assay, Edu assay, glucose uptake and lactic acid production assay were performed to evaluate the regulation of proliferation and glycolysis of HCC cells by FTO-IT1. The binding between protein interleukin enhancer binding factor 2/3 (ILF2/ILF3) and FTO-IT1 was determined by RNA pull-down, mass spectroscopy and RNA immunoprecipitation experiments. RNA stability assay, quantitative reverse transcription PCR and Western blot were employed to determine the regulatory mechanisms of FTO-IT1 on fat mass and obesity-associated (FTO). Methylated RNA immunoprecipitation assay was used to assessed the regulation of key enzymes of glycolysis by FTO. The role of FTO-IT1/FTO in vivo was confirmed via xenograft tumor model. Results LncRNA FTO-IT1, an intronic region transcript of FTO gene, was highly expressed in HCC and associated with poor prognosis of patients with HCC. FTO-IT1 was related to proliferation and glycolysis of HCC cells, and contributed to the malignant progression of HCC by promoting glycolysis. Mechanistically, FTO-IT1 induced stabilization of FTO mRNA by recruiting ILF2/ILF3 protein complex to 3’UTR of FTO mRNA. As a demethylase for N 6-methyladenosine (m6A), FTO decreased m6A modification on mRNAs of glycolysis associated genes including GLUT1, PKM2, and c-Myc which alleviated the YTH N6-methyladenosine RNA binding protein 2 (YTHDF2)-mediated mRNA degradation. Therefore, the upregulated expression of FTO-IT1 leaded to overexpression of GLUT1, PKM2, and c-Myc by which enhanced glycolysis of HCC. Meanwhile, it was found that c-Myc transcriptional regulated expression of FTO-IT1 by binding to its promoter area under hypo-glucose condition, forming a reciprocal loop between c-Myc and FTO-IT1. Conclusions This study identified an important role of the FTO-IT1/FTO axis mediated m6A modification of glycolytic genes contributed to glycolysis and tumorigenesis of HCC, and FTO-IT1 might be served as a new therapeutic target for HCC

    Swertia bimaculata moderated liver damage in mice by regulating intestine microbiota

    No full text
    Swertia bimaculata (SB) is a medicinal herb in China having an array of therapeutic and biological properties. This study aimed to explore the attenuating effect of SB on carbon tetrachloride (CCl4) induced hepato-toxicity by regulation of gut microbiome in ICR mice. For this purpose, CCl4 was injected intraperitoneally in different mice groups (B, C, D and E) every 4th day for a period of 47 days. Additionally, C, D, and E groups received a daily dose (50 mg/kg, 100 mg/kg, and 200 mg/kg respectively) of Ether extract of SB via gavage for the whole study period. The results of serum biochemistry analysis, ELISA, H&E staining, and sequencing of the gut microbiome, indicated that SB significantly alleviates the CCl4-induced liver damage and hepatocyte degeneration. The serum levels of alanine transaminase, aspartate aminotransferase, malondialdehyde, interleukin 1 beta and tumor necrosis factor-alpha were significantly lower in SB treated groups compared to control while levels of glutathione peroxidase were raised. Also, the sequencing data indicate that supplementation with SB could restore the microbiome and its function in CCl4-induced variations in intestinal microbiome of mice by significantly downregulating the abundances of pathogenic intestinal bacteria species including Bacteroides, Enterococcus, Eubacterium, Bifidobacterium while upregulating the levels of beneficial bacteria like Christensenella in the gut. In conclusion, we revealed that SB depicts a beneficial effect against hepatotoxicity induced by CCl4 in mice through the remission of hepatic inflammation and injury, through regulation of oxidative stress, and by restoring gut microbiota dysbiosis
    corecore