21 research outputs found

    Vascular smooth muscle TRPC3 channels facilitate the inverse hemodynamic response during status epilepticus

    Get PDF
    Human status epilepticus (SE) is associated with a pathological reduction in cerebral blood flow termed the inverse hemodynamic response (IHR). Canonical transient receptor potential 3 (TRPC3) channels are integral to the propagation of seizures in SE, and vascular smooth muscle cell (VSMC) TRPC3 channels participate in vasoconstriction. Therefore, we hypothesize that cerebrovascular TRPC3 channels may contribute to seizure-induced IHR. To examine this possibility, we developed a smooth muscle-specific TRPC3 knockout (TRPC3smcKO) mouse. To quantify changes in neurovascular coupling, we combined laser speckle contrast imaging with simultaneous electroencephalogram recordings. Control mice exhibited multiple IHRs, and a limited increase in cerebral blood flow during SE with a high degree of moment-to-moment variability in which blood flow was not correlated with neuronal activity. In contrast, TRPC3smcKO mice showed a greater increase in blood flow that was less variable and was positively correlated with neuronal activity. Genetic ablation of smooth muscle TRPC3 channels shortened the duration of SE by eliminating a secondary phase of intense seizures, which was evident in littermate controls. Our results are consistent with the idea that TRPC3 channels expressed by cerebral VSMCs contribute to the IHR during SE, which is a critical factor in the progression of SE.Fil: Cozart, Michael A.. University of Arkansas for Medical Sciences; Estados UnidosFil: Phelan, Kevin D.. University of Arkansas for Medical Sciences; Estados UnidosFil: Wu, Hong. University of Arkansas for Medical Sciences; Estados UnidosFil: Mu, Shengyu. University of Arkansas for Medical Sciences; Estados UnidosFil: Birnbaumer, Lutz. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Instituto de Investigaciones Biomédicas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas; ArgentinaFil: Rusch, Nancy J.. University of Arkansas for Medical Sciences; Estados UnidosFil: Zheng, Fang. University of Arkansas for Medical Sciences; Estados Unido

    Blueberry Polyphenols Increase Nitric Oxide and Attenuate Angiotensin II-Induced Oxidative Stress and Inflammatory Signaling in Human Aortic Endothelial Cells

    Full text link
    Accumulating evidence indicate that blueberries have anti-hypertensive properties, which may be mainly due to its rich polyphenol content and their high antioxidant capacity. Thus, we aimed to investigate the mechanisms by which blueberry polyphenols exert these effects. Human aortic endothelial cells (HAECs) were incubated with 200 µg/mL blueberry polyphenol extract (BPE) for 1 h prior to a 12 h treatment with angiotensin (Ang) II, a potent vasoconstrictor. Our results indicate that Ang II increased levels of superoxide anions and decreased NO levels in HAECs. These effects were attenuated by pre-treatment with BPE. Ang II increased the expression of the pro-oxidant enzyme NOX1, which was not attenuated by BPE. Pre-treatment with BPE attenuated the Ang II-induced increase in the phosphorylation of the redox-sensitive MAPK kinases, SAPK/JNK and p38. BPE increased the expression of the redox-transcription factor NRF2 as well as detoxifying and antioxidant enzymes it transcribes including HO-1, NQO1, and SOD1. We also show that BPE attenuates the Ang II-induced phosphorylation of the NF-κB p65 subunit. Further, we show that inhibition of NRF2 leads to a decrease in the expression of HO-1 and increased phosphorylation of the NF-κB p65 subunit in HAECs treated with BPE and Ang II. These findings indicate that BPE acts through a NRF2-dependent mechanism to reduce oxidative stress and increase NO levels in Ang II-treated HAECs

    Blueberry Polyphenols Increase Nitric Oxide and Attenuate Angiotensin II-Induced Oxidative Stress and Inflammatory Signaling in Human Aortic Endothelial Cells

    Full text link
    Accumulating evidence indicate that blueberries have anti-hypertensive properties, which may be mainly due to its rich polyphenol content and their high antioxidant capacity. Thus, we aimed to investigate the mechanisms by which blueberry polyphenols exert these effects. Human aortic endothelial cells (HAECs) were incubated with 200 µg/mL blueberry polyphenol extract (BPE) for 1 h prior to a 12 h treatment with angiotensin (Ang) II, a potent vasoconstrictor. Our results indicate that Ang II increased levels of superoxide anions and decreased NO levels in HAECs. These effects were attenuated by pre-treatment with BPE. Ang II increased the expression of the pro-oxidant enzyme NOX1, which was not attenuated by BPE. Pre-treatment with BPE attenuated the Ang II-induced increase in the phosphorylation of the redox-sensitive MAPK kinases, SAPK/JNK and p38. BPE increased the expression of the redox-transcription factor NRF2 as well as detoxifying and antioxidant enzymes it transcribes including HO-1, NQO1, and SOD1. We also show that BPE attenuates the Ang II-induced phosphorylation of the NF-κB p65 subunit. Further, we show that inhibition of NRF2 leads to a decrease in the expression of HO-1 and increased phosphorylation of the NF-κB p65 subunit in HAECs treated with BPE and Ang II. These findings indicate that BPE acts through a NRF2-dependent mechanism to reduce oxidative stress and increase NO levels in Ang II-treated HAECs

    A SAW-Based Chemical Sensor for Detecting Sulfur-Containing Organophosphorus Compounds Using a Two-Step Self-Assembly and Molecular Imprinting Technology

    Full text link
    This paper presents a new effective approach for the sensitive film deposition of surface acoustic wave (SAW) chemical sensors for detecting organophosphorus compounds such as O-ethyl-S-2-diisopropylaminoethyl methylphosphonothiolate (VX) containing sulfur at extremely low concentrations. To improve the adsorptive efficiency, a two-step technology is proposed for the sensitive film preparation on the SAW delay line utilizing gold electrodes. First, mono[6-deoxy-6-[(mercaptodecamethylene)thio]]-β-cyclodextrin is chosen as the sensitive material for VX detection, and a ~2 nm-thick monolayer is formed on the SAW delay line by the binding of Au-S. This material is then analyzed by atomic force microscopy (AFM). Second, the VX molecule is used as the template for molecular imprinting. The template is then removed by washing the delay line with ethanol and distilled water, thereby producing the sensitive and selective material for VX detection. The performance of the developed SAW sensor is evaluated, and results show high sensitivity, low detection limit, and good linearity within the VX concentration of 0.15–5.8 mg/m3. The possible interactions between the film and VX are further discussed

    Selective Surface Acoustic Wave-Based Organophosphorus Sensor Employing a Host-Guest Self-Assembly Monolayer of β-Cyclodextrin Derivative

    Full text link
    Self-assembly and molecular imprinting technologies are very attractive technologies for the development of artificial recognition systems and provide chemical recognition based on need and not happenstance. In this paper, we employed a b-cyclodextrin derivative surface acoustic wave (SAW) chemical sensor for detecting the chemical warfare agents (CWAs) sarin (O-Isoprophyl methylphosphonofluoridate, GB). Using sarin acid (isoprophyl hydrogen methylphosphonate) as an imprinting template, mono[6-deoxy-6-[(mercaptodecamethylene)thio]]-β-cyclodextrin was prepared by self-assembled method on one of the SAW oscillators. After templates’ removal, a sensitive and selective molecular imprinting (MIP) monolayer for GB was prepared. Electrochemical impedance spectroscopy and atomic force microscope (AFM) were used to characterize this film. Comparing the detection results to GB by MIP film and non-MIP film, the molecularly imprinting effect was also proved. The resulting SAW sensor could detect sarin as low as 0.10 mg/m3 at room temperature and the frequency shift was about 300 Hz. The response frequency increased linearly with increasing sarin concentration in the range of 0.7 mg/m3~3.0 mg/m3. When sarin was detected under different temperatures, the SAW sensor exhibited outstanding sensitivity and reliability

    Non-Canonical Cannabinoid Receptors with Distinct Binding and Signaling Properties in Prostate and Other Cancer Cell Types Mediate Cell Death

    Full text link
    Cannabinoids exert anti-cancer actions; however, the underlying cytotoxic mechanisms and the cannabinoid receptors (CBRs) involved remain unclear. In this study, CBRs were characterized in several cancer cell lines. Radioligand binding screens surprisingly revealed specific binding only for the non-selective cannabinoid [3H]WIN-55,212-2, and not [3H]CP-55,940, indicating that the expressed CBRs exhibit atypical binding properties. Furthermore, [3H]WIN-55,212-2 bound to a single site in all cancer cells with high affinity and varying densities. CBR characteristics were next compared between human prostate cancer cell lines expressing low (PC-3) and high (DU-145) CBR density. Although mRNA for canonical CBRs was detected in both cell lines, only 5 out of 15 compounds with known high affinity for canonical CBRs displaced [3H]WIN-55,212-2 binding. Functional assays further established that CBRs in prostate cancer cells exhibit distinct signaling properties relative to canonical Gi/Go-coupled CBRs. Prostate cancer cells chronically exposed to both CBR agonists and antagonists/inverse agonists produced receptor downregulation, inconsistent with actions at canonical CBRs. Treatment of DU-145 cells with CBR ligands increased LDH-release, decreased ATP-dependent cell viability, and produced mitochondrial membrane potential depolarization. In summary, several cancer cell lines express CBRs with binding and signaling profiles dissimilar to canonical CBRs. Drugs selectively targeting these atypical CBRs might exhibit improved anti-cancer properties

    Efficient Suppression of Chain Transfer and Branching via Cs-Type Shielding in a Neutral Ni(II) Catalyst

    Full text link
    An effective shielding of both apical positions of a neutral Ni(II) active site is achieved by dibenzosuberyl groups, both attached via the same donors' N -aryl group in a C s -type arrangement. The key aniline building block is accessible in a single step from commercially available dibenzosuberol. This shielding approach suppresses chain transfer and branch formation to such an extent that ultrahigh molecular weight polyethylenes (5 Ă— 10 6 g mol -1 ) are accessible, with a strictly linear microstructure (< 0.1 branches/1000C). Key features of this highly active (4.3 Ă— 10 5 turnovers h -1 ) catalyst are an exceptionally facile preparation, thermal robustness (up to 90 o C polymerization temperature), ability for living polymerization and compatibility with THF as a polar reaction medium.publishe

    Role of Histamine and Related Signaling in Kaposi’s Sarcoma-Associated Herpesvirus Pathogenesis and Oncogenesis

    Full text link
    Although Kaposi’s sarcoma-associated herpesvirus (KSHV) has been reported to cause several human cancers including Kaposi’s sarcoma (KS) and primary effusion lymphoma (PEL), the mechanisms of KSHV-induced tumorigenesis, especially virus–host interaction network, are still not completely understood, which therefore hinders the development of effective therapies. Histamine, together with its receptors, plays an important role in various allergic diseases by regulating different inflammation and immune responses. Our previous data showed that antagonists targeting histamine receptors effectively repressed KSHV lytic replication. In the current study, we determined that histamine treatment increased cell proliferation and anchorage-independent growth abilities of KSHV-infected cells. Furthermore, histamine treatment affected the expression of some inflammatory factors from KSHV-infected cells. For clinical relevance, several histamine receptors were highly expressed in AIDS-KS tissues when compared to normal skin tissues. We determined that histamine treatment promoted KSHV-infected lymphoma progression in immunocompromised mice models. Therefore, besides viral replication, our data indicate that the histamine and related signaling are also involved in other functions of KSHV pathogenesis and oncogenesis
    corecore