3,692 research outputs found

    Mycorrhizal Fungi Regulate Root Responses and Leaf Physiological Activities in Trifoliate Orange

    Get PDF
    Plant responses to mycorrhization are mediated through secretion of certain signal molecules deposited in mycorrhizosphere in response to environmental stimuli. Responses of four arbuscular mycorrhizal fungi (AMF), namely Claroideoglomus etunicatum, Diversispora versiformis, Funneliformis mosseae, and Rhizoglomus intraradices on root morphology, lateral root (LR) number, and leaf carbohydrates, nitric oxide (NO), and calmodulin (CaM) changes were studied using trifoliate orange. Inoculation response of D. versiformis, F. mosseae, and R. intraradices registered significantly higher plant growth performance (plant height, stem diameter, leaf number, and shoot and root biomass), root morphological traits (total length, projected area, surface area, and volume), and LR number (first-, second-, third-, and forth-order), compared to un-inoculated response. Higher concentrations of CaM, NO, glucose, and fructose and lower sucrose level in leaves were observed in AMF-seedlings than in non-AMF seedlings. Correlation studies further revealed, root morphological traits and LR numbers were significantly negatively correlated with sucrose whereas positively correlated with glucose, fructose, NO, and CaM level in leaves. These results suggested, AMF-induced root modification is routed through sucrose cleavage and partly through changes in NO and CaM

    Mycorrhiza and Common Mycorrhizal Network Regulate the Production of Signal Substances in Trifoliate Orange (Poncirus trifoliata)

    Get PDF
    Common mycorrhizal networks (CMNs) connecting two or more neighbouring plants are confirmed to transfer signals, whereas little information about CMNs effects on the signal substances production is known. In this study, a two-chambered rootbox separated by 37 µm nylon mesh was used to establish donor and receptor chambers. Two chambers both were planted with trifoliate orange (Poncirus trifoliata) and then only donor chamber inoculated with Diversispora versiformis, Paraglomus occultum and Rhizoglomus intraradices. The roots of the donor and receptor plants both were mycorrhizated suggesting that CMNs were established between donor and receptor seedlings. Moreover, the AMF association dramatically increased plant height, stem diameter, leaf numbers, and shoot and root biomass in both the donor and receptor seedlings. The AMF inoculation in the donor plants and the subsequent mycorrhizal colonization by CMNs in the receptor plants significantly increased root calmodulin (CaM) and salicylic acid (SA) concentrations, while considerably decreased root nitric oxide (NO) and jasmonic acid (JA) concentrations. This was accompanied by down-regulated expression of three JA synthetic genes (PtLOX, PtAOS and PtAOC), regardless of donor and receptor seedlings. These results thus suggest that CMNs between trifoliate orange seedlings manifestly promote plant growth and affect the production of signal substances
    • …
    corecore