412 research outputs found

    Ferulic Acid Enhances Peripheral Nerve Regeneration across Long Gaps

    Get PDF
    This study investigated the effect of ferulic acid (FA) on peripheral nerve injury. In the in vitro test, the effect of FA on viability of Schwann cells was studied. In the in vivo test, right sciatic nerves of the rats were transected, and a 15 mm nerve defect was created. A nerve conduit made of silicone rubber tube filled with FA (5 and 25 μg/mL), or saline (control), was implanted into the nerve defect. Results show that the number of proliferating Schwann cells increased significantly in the FA-treated group at 25 μg/mL compared to that in the control group. After 8 weeks, the FA-treated group at 25 μg/mL had a higher rate of successful regeneration across the wide gap, a significantly calcitonin gene-related peptide (CGRP) staining of the lamina I-II regions in the dorsal horn ipsilateral to the injury, a significantly diminished number of macrophages recruited, and a significantly shortening of the latency and an acceleration of the nerve conductive velocity (NCV) of the evoked muscle action potentials (MAPs) compared with the controls. In summary, the FA may be useful in the development of future strategies for the treatment of peripheral nerve injury

    Establishment of a Knock-In Mouse Model with the SLC26A4 c.919-2A>G Mutation and Characterization of Its Pathology

    Get PDF
    Recessive mutations in the SLC26A4 gene are a common cause of hereditary hearing impairment worldwide. Previous studies have demonstrated that different SLC26A4 mutations may have different pathogenetic mechanisms. In the present study, we established a knock-in mouse model (i.e., Slc26a4tm1Dontuh/tm1Dontuh mice) homozygous for the c.919-2A>G mutation, which is a common mutation in East Asians. Mice were then subjected to audiologic assessment, a battery of vestibular evaluations, and inner ear morphological studies. All Slc26a4tm1Dontuh/tm1Dontuh mice revealed profound hearing loss, whereas 46% mice demonstrated pronounced head tilting and circling behaviors. There was a significant difference in the vestibular performance between wild-type and Slc26a4tm1Dontuh/tm1Dontuh mice, especially those exhibiting circling behavior. Inner ear morphological examination of Slc26a4tm1Dontuh/tm1Dontuh mice revealed an enlarged endolymphatic duct, vestibular aqueduct and sac, atrophy of stria vascularis, deformity of otoconia in the vestibular organs, consistent degeneration of cochlear hair cells, and variable degeneration of vestibular hair cells. Audiologic and inner ear morphological features of Slc26a4tm1Dontuh/tm1Dontuh mice were reminiscent of those observed in humans. These features were also similar to those previously reported in both knock-out Slc26a4−/− mice and Slc26a4loop/loop mice with the Slc26a4 p.S408F mutation, albeit the severity of vestibular hair cell degeneration appeared different among the three mouse strains

    CircNet: a database of circular RNAs derived from transcriptome sequencing data

    Get PDF
    Circular RNAs (circRNAs) represent a new type of regulatory noncoding RNA that only recently has been identified and cataloged. Emerging evidence indicates that circRNAs exert a new layer of post-transcriptional regulation of gene expression. In this study, we utilized transcriptome sequencing datasets to systematically identify the expression of circRNAs (including known and newly identified ones by our pipeline) in 464 RNA-seq samples, and then constructed the CircNet database (http://circnet.mbc.nctu.edu.tw/) that provides the following resources: (i) novel circRNAs, (ii) integrated miRNA-target networks, (iii) expression profiles of circRNA isoforms, (iv) genomic annotations of circRNA isoforms (e.g. 282 948 exon positions), and (v) sequences of circRNA isoforms. The CircNet database is to our knowledge the first public database that provides tissue-specific circRNA expression profiles and circRNA–miRNA-gene regulatory networks. It not only extends the most up to date catalog of circRNAs but also provides a thorough expression analysis of both previously reported and novel circRNAs. Furthermore, it generates an integrated regulatory network that illustrates the regulation between circRNAs, miRNAs and genes

    Elevated BCRP/ABCG2 Expression Confers Acquired Resistance to Gefitinib in Wild-Type EGFR-Expressing Cells

    Get PDF
    The sensitivity of non-small cell lung cancer (NSCLC) patients to EGFR tyrosine kinase inhibitors (TKIs) is strongly associated with activating EGFR mutations. Although not as sensitive as patients harboring these mutations, some patients with wild-type EGFR (wtEGFR) remain responsive to EGFR TKIs, suggesting that the existence of unexplored mechanisms renders most of wtEGFR-expressing cancer cells insensitive.Here, we show that acquired resistance of wtEGFR-expressing cancer cells to an EGFR TKI, gefitinib, is associated with elevated expression of breast cancer resistance protein (BCRP/ABCG2), which in turn leads to gefitinib efflux from cells. In addition, BCRP/ABCG2 expression correlates with poor response to gefitinib in both cancer cell lines and lung cancer patients with wtEGFR. Co-treatment with BCRP/ABCG2 inhibitors enhanced the anti-tumor activity of gefitinib.Thus, BCRP/ABCG2 expression may be a predictor for poor efficacy of gefitinib treatment, and targeting BCRP/ABCG2 may broaden the use of gefitinib in patients with wtEGFR
    corecore