15,438 research outputs found

    Synchronous control of dual-channel all-optical multi-state switching

    Full text link
    We have experimentally observed optical multistabilities (OMs) simultaneously on both the signal and generated Stokes fields in an optical ring cavity with a coherently-prepared multilevel atomic medium. The two observed OMs, which are governed by different physical processes, are coupled via the multilevel atomic medium and exhibit similar threshold behaviors. By modulating the cavity input (signal) field with positive or negative pulses, dual-channel all-optical multi-state switching has been realized and synchronously controlled, which can be useful for increasing communication and computation capacities

    Bubble Nucleation of Spatial Vector Fields

    Full text link
    We study domain-walls and bubble nucleation in a non-relativistic vector field theory with different longitudinal and transverse speeds of sound. We describe analytical and numerical methods to calculate the orientation dependent domain-wall tension, σ(θ)\sigma(\theta). We then use this tension to calculate the critical bubble shape. The longitudinally oriented domain-wall tends to be the heaviest, and sometime suffers an instability. It can spontaneously break into zigzag segments. In this case, the critical bubble develops kinks, and its energy, and therefore the tunneling rate, scales with the sound speeds very differently than what would be expected for a smooth bubble.Comment: version 4, correction in the citation

    Molecular hydrodynamics of the moving contact line in two-phase immiscible flows

    Full text link
    The ``no-slip'' boundary condition, i.e., zero fluid velocity relative to the solid at the fluid-solid interface, has been very successful in describing many macroscopic flows. A problem of principle arises when the no-slip boundary condition is used to model the hydrodynamics of immiscible-fluid displacement in the vicinity of the moving contact line, where the interface separating two immiscible fluids intersects the solid wall. Decades ago it was already known that the moving contact line is incompatible with the no-slip boundary condition, since the latter would imply infinite dissipation due to a non-integrable singularity in the stress near the contact line. In this paper we first present an introductory review of the problem. We then present a detailed review of our recent results on the contact-line motion in immiscible two-phase flow, from MD simulations to continuum hydrodynamics calculations. Through extensive MD studies and detailed analysis, we have uncovered the slip boundary condition governing the moving contact line, denoted the generalized Navier boundary condition. We have used this discovery to formulate a continuum hydrodynamic model whose predictions are in remarkable quantitative agreement with the MD simulation results at the molecular level. These results serve to affirm the validity of the generalized Navier boundary condition, as well as to open up the possibility of continuum hydrodynamic calculations of immiscible flows that are physically meaningful at the molecular level.Comment: 36 pages with 33 figure
    • …
    corecore