14,925 research outputs found
Single-input and single-output (SISO) controller reduction based on the -norm
This paper proposes a new method to solve the controller-reduction problem based on the -norm. This method uses a reduced-order closed-loop system to deduce reduced-order controllers. The problem of obtaining the required lower-order closed-loop system was formulated as an -norm optimization, and the conditions were provided for guaranteeing the internal stability and the existence of lower-order controllers from the obtained reduced-order closed-loop system. In addition, the particle swarm optimization and sequence linear programming were adopted to solve the resultant -norm optimization. Two numerical examples demonstrated the effectiveness of the proposed method
Leibniz 2-algebras and twisted Courant algebroids
In this paper, we give the categorification of Leibniz algebras, which is
equivalent to 2-term sh Leibniz algebras. They reveal the algebraic structure
of omni-Lie 2-algebras introduced in \cite{omniLie2} as well as twisted Courant
algebroids by closed 4-forms introduced in \cite{4form}.
We also prove that Dirac structures of twisted Courant algebroids give rise
to 2-term -algebras and geometric structures behind them are exactly
-twisted Lie algebroids introduced in \cite{Grutzmann}.Comment: 22 pages, to appear in Comm. Algebr
Laser opacity in underdense preplasma of solid targets due to quantum electrodynamics effects
We investigate how next-generation laser pulses at 10 PW 200 PW interact
with a solid target in the presence of a relativistically underdense preplasma
produced by amplified spontaneous emission (ASE). Laser hole boring and
relativistic transparency are strongly restrained due to the generation of
electron-positron pairs and -ray photons via quantum electrodynamics
(QED) processes. A pair plasma with a density above the initial preplasma
density is formed, counteracting the electron-free channel produced by the hole
boring. This pair-dominated plasma can block the laser transport and trigger an
avalanche-like QED cascade, efficiently transfering the laser energy to
photons. This renders a 1--scalelength, underdense preplasma
completely opaque to laser pulses at this power level. The QED-induced opacity
therefore sets much higher contrast requirements for such pulse in solid-target
experiments than expected by classical plasma physics. Our simulations show for
example, that proton acceleration from the rear of a solid with a preplasma
would be strongly impaired.Comment: 5 figure
Valosin-containing protein regulates the proteasome-mediated degradation of DNA-PKcs in glioma cells.
DNA-dependent protein kinase (DNA-PK) has an important role in the repair of DNA damage and regulates the radiation sensitivity of glioblastoma cells. The VCP (valosine-containing protein), a chaperone protein that regulates ubiquitin-dependent protein degradation, is phosphorylated by DNA-PK and recruited to DNA double-strand break sites to regulate DNA damage repair. However, it is not clear whether VCP is involved in DNA-PKcs (DNA-PK catalytic subunit) degradation or whether it regulates the radiosensitivity of glioblastoma. Our data demonstrated that DNA-PKcs was ubiquitinated and bound to VCP. VCP knockdown resulted in the accumulation of the DNA-PKcs protein in glioblastoma cells, and the proteasome inhibitor MG132 synergised this increase. As expected, this increase promoted the efficiency of DNA repair in several glioblastoma cell lines; in turn, this enhanced activity decreased the radiation sensitivity and prolonged the survival fraction of glioblastoma cells in vitro. Moreover, the VCP knockdown in glioblastoma cells reduced the survival time of the xenografted mice with radiation treatment relative to the control xenografted glioblastoma mice. In addition, the VCP protein was also downregulated in ~25% of GBM tissues from patients (WHO, grade IV astrocytoma), and the VCP protein level was correlated with patient survival (R(2)=0.5222, P<0.05). These findings demonstrated that VCP regulates DNA-PKcs degradation and increases the sensitivity of GBM cells to radiation
Phase diagram of the frustrated, spatially anisotropic S=1 antiferromagnet on a square lattice
We study the S=1 square lattice Heisenberg antiferromagnet with spatially
anisotropic nearest neighbor couplings , frustrated by a
next-nearest neighbor coupling numerically using the density-matrix
renormalization group (DMRG) method and analytically employing the
Schwinger-Boson mean-field theory (SBMFT). Up to relatively strong values of
the anisotropy, within both methods we find quantum fluctuations to stabilize
the N\'{e}el ordered state above the classically stable region. Whereas SBMFT
suggests a fluctuation-induced first order transition between the N\'{e}el
state and a stripe antiferromagnet for and an
intermediate paramagnetic region opening only for very strong anisotropy, the
DMRG results clearly demonstrate that the two magnetically ordered phases are
separated by a quantum disordered region for all values of the anisotropy with
the remarkable implication that the quantum paramagnetic phase of the spatially
isotropic - model is continuously connected to the limit of
decoupled Haldane spin chains. Our findings indicate that for S=1 quantum
fluctuations in strongly frustrated antiferromagnets are crucial and not
correctly treated on the semiclassical level.Comment: 10 pages, 10 figure
Spin states and persistent currents in a mesoscopic ring with an embedded magnetic impurity
Spin states and persistent currents are investigated theoretically in a
mesoscopic ring with an embedded magnetic ion under a uniform magnetic field
including the spin-orbit interactions. The magnetic impurity acts as a
spin-dependent -potential for electrons and results in gaps in the
energy spectrum, consequently suppresses the oscillation of the persistent
currents. The competition between the Zeeman splittings and the -
exchange interaction leads to a transition of the electron ground state in the
ring. The interplay between the periodic potential induced by the Rashba and
Dresselhaus spin-orbit interactions and the -potential induced by the
magnetic impurity leads to significant variation in the energy spectrum, charge
density distribution, and persistent currents of electrons in the ring.Comment: 8 pages, 11 figure
Representations of hom-Lie algebras
In this paper, we study representations of hom-Lie algebras. In particular,
the adjoint representation and the trivial representation of hom-Lie algebras
are studied in detail. Derivations, deformations, central extensions and
derivation extensions of hom-Lie algebras are also studied as an application.Comment: 16 pages, multiplicative and regular hom-Lie algebras are used,
Algebra and Representation Theory, 15 (6) (2012), 1081-109
- …