18,222 research outputs found

    Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs

    Full text link
    We present two realistic entanglement concentration protocols (ECPs) for pure partially entangled photons. A partially entangled photon pair can be concentrated to a maximally entangled pair with only an ancillary single photon in a certain probability, while the conventional ones require two copies of partially entangled pairs at least. Our first protocol is implemented with linear optics and the second one is implemented with cross-Kerr nonlinearities. Compared with other ECPs, they do not need to know the accurate coefficients of the initial state. With linear optics, it is feasible with current experiment. With cross-Kerr nonlinearities, it does not require the sophisticated single-photon detectors and can be repeated to get a higher success probability. Moreover, the second protocol can get the higher entanglement transformation efficiency and it maybe the most economical one by far. Meanwhile, both of protocols are more suitable for multi-photon system concentration, because they need less operations and classical communications. All these advantages make two protocols be useful in current long-distance quantum communications

    Efficient two-step entanglement concentration for arbitrary W states

    Full text link
    We present two two-step practical entanglement concentration protocols (ECPs) for concentrating an arbitrary three-particle less-entangled W state into a maximally entangled W state assisted with single photons. The first protocol uses the linear optics and the second protocol adopts the cross-Kerr nonlinearity to perform the protocol. In the first protocol, based on the post-selection principle, three parties say Alice, Bob and Charlie in different distant locations can obtain the maximally entangled W state from the arbitrary less-entangled W state with a certain success probability. In the second protocol, it dose not require the parties to posses the sophisticated single-photon detectors and the concentrated photon pair can be retained after performing this protocol successfully. Moreover, the second protocol can be repeated to get a higher success probability. Both protocols may be useful in practical quantum information applications.Comment: 10 pages, 4 figure

    Semiclassical Fourier Transform for Quantum Computation

    Full text link
    Shor's algorithms for factorization and discrete logarithms on a quantum computer employ Fourier transforms preceding a final measurement. It is shown that such a Fourier transform can be carried out in a semi-classical way in which a ``classical'' (macroscopic) signal resulting from the measurement of one bit (embodied in a two-state quantum system) is employed to determine the type of measurement carried out on the next bit, and so forth. In this way the two-bit gates in the Fourier transform can all be replaced by a smaller number of one-bit gates controlled by classical signals. Success in simplifying the Fourier transform suggests that it may be worthwhile looking for other ways of using semi-classical methods in quantum computing.Comment: Latex 6 pages, two figures on one page in uuencoded Postscrip

    On the sine-Gordon--Thirring equivalence in the presence of a boundary

    Get PDF
    In this paper, the relationship between the sine-Gordon model with an integrable boundary condition and the Thirring model with boundary is discussed and the reflection RR-matrix for the massive Thirring model, which is related to the physical boundary parameters of the sine-Gordon model, is given. The relationship between the the boundary parameters and the two formal parameters appearing in the work of Ghoshal and Zamolodchikov is discussed.Comment: 14 pages, Latex, to be published in Int. J. Mod. Phys. A. Two references adde

    Non-linear supersymmetric Sigma-Model for Diffusive Scattering of Classical Waves with Resonance Enhancement

    Full text link
    We derive a non-linear sigma-model for the transport of light (classical waves) through a disordered medium. We compare this extension of the model with the well-established non-linear sigma-model for the transport of electrons (Schroedinger waves) and display similarities of and differences between both cases. Motivated by experimental work (M. van Albada et al., Phys. Rev. Lett. 66 (1991) 3132), we then generalize the non-linear sigma-model further to include resonance scattering. We find that the form of the effective action is unchanged but that a parameter of the effective action, the mean level density, is modified in a manner which correctly accounts for the data.Comment: 4 pages, 1 Figure, to be published in Europhysics Letter

    Spin Hall Effect and Spin Transfer in Disordered Rashba Model

    Full text link
    Based on numerical study of the Rashba model, we show that the spin Hall conductance remains finite in the presence of disorder up to a characteristic length scale, beyond which it vanishes exponentially with the system size. We further perform a Laughlin's gauge experiment numerically and find that all energy levels cannot cross each other during an adiabatic insertion of the flux in accordance with the general level-repulsion rule. It results in zero spin transfer between two edges of the sample as each state always evolves back after the insertion of one flux quantum, in contrast to the quantum Hall effect. It implies that the topological spin Hall effect vanishes with the turn-on of disorder.Comment: 4 pages, 4 figures final versio

    Likelihood-based statistical estimation from quantized data

    Get PDF
    Most standard statistical methods treat numerical data as if they were real (infinitenumber- of-decimal-places) observations. The issue of quantization or digital resolution is recognized by engineers and metrologists, but is largely ignored by statisticians and can render standard statistical methods inappropriate and misleading. This article discusses some of the difficulties of interpretation and corresponding difficulties of inference arising in even very simple measurement contexts, once the presence of quantization is admitted. It then argues (using the simple case of confidence interval estimation based on a quantized random sample from a normal distribution as a vehicle) for the use of statistical methods based on rounded data likelihood functions as an effective way of dealing with the issue. --

    Adaptive Bayesian decision feedback equalizer for dispersive mobile radio channels

    No full text
    The paper investigates adaptive equalization of time dispersive mobile ratio fading channels and develops a robust high performance Bayesian decision feedback equalizer (DFE). The characteristics and implementation aspects of this Bayesian DFE are analyzed, and its performance is compared with those of the conventional symbol or fractional spaced DFE and the maximum likelihood sequence estimator (MLSE). In terms of computational complexity, the adaptive Bayesian DFE is slightly more complex than the conventional DFE but is much simpler than the adaptive MLSE. In terms of error rate in symbol detection, the adaptive Bayesian DFE outperforms the conventional DFE dramatically. Moreover, for severely fading multipath channels, the adaptive MLSE exhibits significant degradation from the theoretical optimal performance and becomes inferior to the adaptive Bayesian DFE
    • 

    corecore