7,545 research outputs found
Reprocessed emission from warped accretion discs induced by the Bardeen-Petterson effect
The broad Balmer emission-line profiles resulting from the reprocessing of
UV/X-ray radiation from a warped accretion disc induced by the
Bardeen-Petterson effect are studied. We adopt a thin warped disc geometry and
a central ring-like illuminating source in our model. We compute the
steady-state shape of the warped disc numerically, and then use it in the
calculation of the line profile. We find that, from the outer radius to the
inner radius of the disc, the warp is twisted by an angle of before
being flattened efficiently into the equatorial plane. The profiles obtained
depend weakly on the illuminating source radius in the range from to
, but depend strongly on this radius when it approaches the marginally
stable orbit of an extreme Kerr black hole. Double- or triplet-peaked line
profiles are present in most cases when the illuminating source radius is low.
The triplet-peaked line profiles observed from the Sloan Digital Sky Survey may
be a {"}signature" of a warped disc.Comment: 8 pages, 6 figures, typos corrected, matches version to appear in
MNRA
On the pinning strategy of complex networks
In pinning control of complex networks, a tacit believing is that the system
dynamics will be better controlled by pinning the large-degree nodes than the
small-degree ones. Here, by changing the number of pinned nodes, we find that,
when a significant fraction of the network nodes are pinned, pinning the
small-degree nodes could generally have a higher performance than pinning the
large-degree nodes. We demonstrate this interesting phenomenon on a variety of
complex networks, and analyze the underlying mechanisms by the model of star
networks. By changing the network properties, we also find that, comparing to
densely connected homogeneous networks, the advantage of the small-degree
pinning strategy is more distinct in sparsely connected heterogenous networks
- …