11 research outputs found

    Influence of gastrointestinal digests of glycated whey protein on the hormone secretion of enteroendocrine cells

    Get PDF
    The present research used two α-dicarbonyl compounds, glyoxal and methylglyoxal and whey protein as subjects, and evaluated the alterations of physicochemical properties, structure, and digestibility of whey protein throughout the glycation process. The STC-1 cells were used as a model to investigate the implications of glycation on the protein nutrition sensing of enteroendocrine cells. Results showed that glycation substantially enhanced the surface hydrophilicity and solubility of whey protein. Additionally, the incorporation of sugar chain structure introduced steric hindrance, facilitating the binding of the free amino group of lysine and resulting in the formation of macromolecular crosslinking glycation structures. These structures potentially hindered the function of gastrointestinal digestive enzymes, thus reducing the degree of digestion. Furthermore, the gastric and intestinal digests of glycated whey protein variably modulated the intestinal hormone secretion of STC-1 cells and elevated the mRNA levels of pertinent hormones. Derived patterns of the effect of the gastrointestinal digestion products of glycated proteins on the level of hormone secretion in enteroendocrine cells

    Digestibility of Bovine Serum Albumin and Peptidomics of the Digests: Effect of Glycation Derived from α-Dicarbonyl Compounds

    No full text
    α-Dicarbonyl compounds, which are widely generated during sugar fragmentation and oil oxidation, are important precursors of advanced glycation end products (AGEs). In this study, the effect of glycation derived from glyoxal (GO), methylglyoxal (MGO) and diacetyl (DA) on the in vitro digestibility of bovine serum albumin (BSA) was investigated. Glycation from α-dicarbonyl compounds reduced digestibility of BSA in both gastric and intestinal stage of digestion according to measurement of degree of hydrolysis. Changes in peptide composition of digests induced by glycation were displayed, showing absence of peptides, occurrence of new peptides and formation of peptide-AGEs, based on the results obtained using liquid chromatography electron-spray-ionization tandem mass spectrometry (LC-ESI-MS/MS). Crosslinked glycation structures derived from DA largely reduced the sensitivity of glycated BSA towards digestive proteases based on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results. Network structures were found to remain in the digests of glycated samples by transmission electron microscope (TEM), thus the impact of AGEs in unabsorbed digests on the gut flora should be an interest for further studies

    Effects of genetic variants and sialylation on in vitro digestibility of purified κ-casein

    No full text
    Milk with different κ-casein (CN) phenotypes has previously been found to influence its gastric digestion rate. Therefore, the aim of the present study is to disentangle contributions of genetic variation and its related sialylation on the in vitro digestion process of κ-CN. Accordingly, κ-CN was purified from milk representing homozygous cows with κ-CN phenotypes AA, BB, or EE and used as substrate molecules in model studies using the INFOGEST 2.0 in vitro static digestion model. Furthermore, the effect of removal of the terminal sialic acids present on the O-linked oligosaccharides of the purified κ-CN A, B, and E protein variants were studied by desialylation enzymatic assays. The κ-CN proteins were purified by reducing anion exchange chromatography with purities of variants A, B, and E of 93.0, 97.1, and 90.0%, respectively. Protein degradations of native and desialylated κ-CN isolates in gastric and intestinal phases were investigated by sodium dodecyl sulfate-PAGE, degree of hydrolysis (DH), and liquid chromatography electrospray ionization mass spectrometry. It was shown that after purification, the κ-CN molecules reassembled into multimer states, which then constituted the basis for the digestion studies. As assessed by DH, purified variants A and E were found to exhibit faster in vitro digestion rates in both gastric and intestinal phases compared with variant B. Desialylation increased both gastric and intestinal digestion rates for all variants, as measured by DH. In the gastric phase, desialylation promoted digestion of variant B at a rate comparable with native variants A and E, whereas in the intestinal phase, desialylation of variant B promoted better digestion than native A or E. Taken together, the results confirm that low glycosylation degree of purified κ-CN promotes faster in vitro digestion rates, and that desialylation of the O-linked oligosaccharides further promotes digestion. This finding could be applied to produce dairy products with enhanced digestibility

    Digestion Profiles of Protein in Edible Pork By-Products

    No full text
    Edible pork by-products are widely consumed in many areas, whereas their digestion characteristics have rarely been evaluated. This work compared the digestibility of protein in boiled pork liver, heart, tripe and skin with tenderloin as a control. Cooked skin showed the highest digestibility in the simulated gastric digestion, whereas its gastric digests were less digested in the simulated intestinal stage. In contrast, cooked tripe showed the lowest gastric digestibility but relatively higher intestinal digestibility. All the edible by-products showed lower digestibility than tenderloin, especially for pork liver, in which large undigested fractions (>300 μm) could be observed. Corresponding to these results, larger amount of bigger peptides was found in the digests of pork liver and skin. In addition, peptides in tripe (average bioactive probability = 0.385) and liver digests (average bioactive probability = 0.386) showed higher average bioactive probability than other samples. Tripe digests contained the highest level of free Asp, Gln, Cys, Val, Phe, Pro, Ser, Thr, Ile and Asn, whereas heart digests contained the highest level of free Leu, Met and Arg. These results could help to reveal the nutrition value of pork by-products

    Phosphorylation and glycosylation isoforms of bovine κ-casein variant E in homozygous Swedish Red cow milk by liquid chromatography-electrospray ionization mass spectrometry

    No full text
    Variations in the phosphorylation and glycosylation patterns of the common κ-casein (CN) variants A and B have been explored, whereas studies on variant E heterogeneity are scarce. This study reports for the first time the detailed phosphorylation and glycosylation pattern of the κ-CN variant E in comparison with variants A and B. Individual cow milk samples representing κ-CN genotype EE (n = 12) were obtained from Swedish Red cows, and the natural posttranslational modifications of its κ-CN were identified and quantified by liquid chromatography-electrospray mass spectrometry. In total, 12 unique isoform masses of κ-CN variant E were identified. In comparison, AA and BB milk consisted of 14 and 17 unique isoform masses, respectively. The most abundant κ-CN E isoform detected in the EE milk was the monophosphorylated, unglycosylated [1P 0G, ∼70%; where P indicates phosphorylation from single to triple phosphorylation (1–3P), and G indicates glycosylation from single to triple glycosylation (1–3G)] form, followed by diphosphorylated, unglycosylated (2P 0G, ∼12%) form, resembling known patterns from variants A and B. However, a clear distinction was the presence of the rare triphosphorylated, nonglycosylated (3P 0G, ∼0.05%) κ-CN isoform in the EE milk. All isoforms detected in variant E were phosphorylated, giving a phosphorylation degree of 100%. This is comparable with the phosphorylation degree of variants A and B, being also almost 100%, though with very small amounts of nonphosphorylated, glycosylated isoforms detected. The glycosylation degree of variant E was found to be around 17%, a bit higher than observed for variant B (around 14%), and higher than variant A (around 7%). Among glycosylation, the glycan e was the most common type identified for all 3 variants, followed by c/d (straight and branched chain trisaccharides, respectively), and b. In contrast to κ-CN variants A and B, no glycan of type a was found in variant E. Taken together, this study shows that the posttranslational modification pattern of variant E resembles that of known variants to a large extent, but with subtle differences

    Physicochemical Properties and Chemical Stability of β-Carotene Bilayer Emulsion Coated with Bovine Serum Albumin and Arabic Gum Compared to Monolayer Emulsions

    No full text
    β-carotene is a lipophilic micronutrient that is considered beneficial to human health. However, there are some limitations in utilizing β-carotene in functional foods or dietary supplements currently because of its poor water dispersibility and chemical stability. A new type of β-carotene bilayer emulsion delivery system was prepared by a layer-by-layer electrostatic deposition technique, for which were chosen bovine serum albumin (BSA) as the inner emulsifier and Arabic gum (GA) as the outer emulsifier. The physicochemical properties of bilayer emulsions were mainly characterized by droplet size distribution, zeta potential, rheological behavior, Creaming Index (CI), and encapsulation ratio of β-carotene. Besides this, the effects of processing conditions (pH, thermal treatment, UV radiation, strong oxidant) and storage time on the chemical stability of bilayer emulsions were also evaluated. The bilayer emulsion had a small droplet size (221.27 ± 5.17 nm) and distribution (PDI = 0.23 ± 0.02), strong zeta potential (−30.37 ± 0.71 mV), good rheological behavior (with the highest viscosity that could reduce the possibility of flocculation) and physical stability (CI = 0), high β-carotene encapsulation ratio (94.35 ± 0.71%), and low interfacial tension (40.81 ± 0.86 mN/m). It also obtained better chemical stability under different environmental stresses when compared with monolayer emulsions studied, because it had a dense and thick bilayer structure
    corecore