11,089 research outputs found

    Evaluation of innovative sprayed-concrete-lined tunnelling

    Get PDF
    The front-shunt tunnel was the first tunnel of the Terminal 5 project at Heathrow to be constructed, and was the first section of sprayed-concrete-lined (SCL) tunnel to be constructed using the method known as LaserShell. This innovation represented a significant deviation from the methods previously used in SCL construction. Therefore it was subjected to a careful examination before and during construction using sophisticated 3D numerical modelling and monitoring during construction. The paper presents typical results from surface settlement levelling, inclinometers and extensometers, pressure cells and tunnel lining displacement measurements, and comments on the performance of the methods and instruments used. The paper then presents the methodology and typical results of the numerical modelling, and shows that the predictions of displacements and stresses compared well with the field measurements. In terms of the control of ground deformations and structural safety the tunnel performed well

    Optimal nonlocal multipartite entanglement concentration based on projection measurements

    Full text link
    We propose an optimal nonlocal entanglement concentration protocol (ECP) for multi-photon systems in a partially entangled pure state, resorting to the projection measurement on an additional photon. One party in quantum communication first performs a parity-check measurement on her photon in an N-photon system and an additional photon, and then she projects the additional photon into an orthogonal Hilbert space for dividing the original NN-photon systems into two groups. In the first group, the N parties will obtain a subset of NN-photon systems in a maximally entangled state. In the second group, they will obtain some less-entangled N-photon systems which are the resource for the entanglement concentration in the next round. By iterating the entanglement concentration process several times, the present ECP has the maximal success probability which is just equivalent to the entanglement of the partially entangled state. That is, this ECP is an optimal one.Comment: 5 pages, 4 figure

    Quantum mechanical photon-count formula derived by entangled state representation

    Full text link
    By introducing the thermo entangled state representation, we derived four new photocount distribution formulas for a given density operator of light field. It is shown that these new formulas, which is convenient to calculate the photocount, can be expressed as such integrations over Laguree-Gaussian function with characteristic function, Wigner function, Q-function, and P-function, respectively.Comment: 5 pages, no figur

    Modes of zonal mean temperature variability 20–100 km from the TIMED/SABER observations

    Get PDF
    In this study we investigate the spatial variabilities of the zonal mean temperature (20–100 km) from the TIMED (Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics)/SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) satellite using the empirical orthogonal functions (EOFs). After removing the climatological annual mean, the first three EOFs are able to explain 87.0% of temperature variabilities. The primary EOF represents 74.1% of total anomalies and is dominated by the north–south contrast. Patterns in the second and third EOFs are related to the semiannual oscillations (SAO) and mesospheric temperature inversions (MTI), respectively. The quasi-biennial oscillation (QBO) component is also decomposed into the seventh EOF with contributions of 1.2%. Last, we use the first three modes and annual mean temperature to reconstruct the data. The result shows small differences are in low latitude, which increase with latitude in the middle stratosphere and upper mesosphere

    Non-linear supersymmetric Sigma-Model for Diffusive Scattering of Classical Waves with Resonance Enhancement

    Full text link
    We derive a non-linear sigma-model for the transport of light (classical waves) through a disordered medium. We compare this extension of the model with the well-established non-linear sigma-model for the transport of electrons (Schroedinger waves) and display similarities of and differences between both cases. Motivated by experimental work (M. van Albada et al., Phys. Rev. Lett. 66 (1991) 3132), we then generalize the non-linear sigma-model further to include resonance scattering. We find that the form of the effective action is unchanged but that a parameter of the effective action, the mean level density, is modified in a manner which correctly accounts for the data.Comment: 4 pages, 1 Figure, to be published in Europhysics Letter
    corecore