3 research outputs found

    The state-of-the-art progress in cloud detection, identification, and tracking approaches: a systematic review

    Get PDF
    A cloud is a mass of water vapor floating in the atmosphere. It is visible from the ground and can remain at a variable height for some time. Clouds are very important because their interaction with the rest of the atmosphere has a decisive influence on weather, for instance by sunlight occlusion or by bringing rain. Weather denotes atmosphere behavior and is determinant in several human activities, such as agriculture or energy capture. Therefore, cloud detection is an important process about which several methods have been investigated and published in the literature. The aim of this paper is to review some of such proposals and the papers that have been analyzed and discussed can be, in general, classified into three types. The first one is devoted to the analysis and explanation of clouds and their types, and about existing imaging systems. Regarding cloud detection, dealt with in a second part, diverse methods have been analyzed, i.e., those based on the analysis of satellite images and those based on the analysis of images from cameras located on Earth. The last part is devoted to cloud forecast and tracking. Cloud detection from both systems rely on thresholding techniques and a few machine-learning algorithms. To compute the cloud motion vectors for cloud tracking, correlation-based methods are commonly used. A few machine-learning methods are also available in the literature for cloud tracking, and have been discussed in this paper too

    Natural Time Series Parameters Forecasting: Validation of the Pattern-Sequence-Based Forecasting (PSF) Algorithm; A New Python Package

    No full text
    Climate change has contributed substantially to the weather and land characteristic phenomena. Accurate time series forecasting for climate and land parameters is highly essential in the modern era for climatologists. This paper provides a brief introduction to the algorithm and its implementation in Python. The pattern-sequence-based forecasting (PSF) algorithm aims to forecast future values of a univariate time series. The algorithm is divided into two major processes: the clustering of data and prediction. The clustering part includes the selection of an optimum value for the number of clusters and labeling the time series data. The prediction part consists of the selection of a window size and the prediction of future values with reference to past patterns. The package aims to ease the use and implementation of PSF for python users. It provides results similar to the PSF package available in R. Finally, the results of the proposed Python package are compared with results of the PSF and ARIMA methods in R. One of the issues with PSF is that the performance of forecasting result degrades if the time series has positive or negative trends. To overcome this problem difference pattern-sequence-based forecasting (DPSF) was proposed. The Python package also implements the DPSF method. In this method, the time series data are first differenced. Then, the PSF algorithm is applied to this differenced time series. Finally, the original and predicted values are restored by applying the reverse method of the differencing process. The proposed methodology is tested on several complex climate and land processes and its potential is evidenced

    Natural Time Series Parameters Forecasting: Validation of the Pattern-Sequence-Based Forecasting (PSF) Algorithm; A New Python Package

    No full text
    Climate change has contributed substantially to the weather and land characteristic phenomena. Accurate time series forecasting for climate and land parameters is highly essential in the modern era for climatologists. This paper provides a brief introduction to the algorithm and its implementation in Python. The pattern-sequence-based forecasting (PSF) algorithm aims to forecast future values of a univariate time series. The algorithm is divided into two major processes: the clustering of data and prediction. The clustering part includes the selection of an optimum value for the number of clusters and labeling the time series data. The prediction part consists of the selection of a window size and the prediction of future values with reference to past patterns. The package aims to ease the use and implementation of PSF for python users. It provides results similar to the PSF package available in R. Finally, the results of the proposed Python package are compared with results of the PSF and ARIMA methods in R. One of the issues with PSF is that the performance of forecasting result degrades if the time series has positive or negative trends. To overcome this problem difference pattern-sequence-based forecasting (DPSF) was proposed. The Python package also implements the DPSF method. In this method, the time series data are first differenced. Then, the PSF algorithm is applied to this differenced time series. Finally, the original and predicted values are restored by applying the reverse method of the differencing process. The proposed methodology is tested on several complex climate and land processes and its potential is evidenced
    corecore