29,421 research outputs found
Seebeck coefficient of thermoelectric moleculat junction: First-principles calculations
A first-principles approach is presented for the thermoelectricity in
molecular junctions formed by a single molecule contact. The study investigates
the Seebeck coefficient considering the source-drain electrodes with distinct
temperatures and chemical potentials in a three-terminal geometry junction. We
compare the Seebeck coefficient in the amino-substituted and unsubstituted
butanethiol junction and observe interesting thermoelectric properties in the
amino-substituted junction. Due to the novel states around the Fermi levels
introduced by the amino-substitution, the Seebeck coefficient could be easily
modulated by using gate voltages and biases. When the temperature in one of the
electrodes is fixed, the Seebeck coefficient varies significantly with the
temperature in the other electrode, and such dependence could be modulated by
varying the gate voltages. As the biases increase, richer features in the
Seebeck coefficient are observed, which are closely related to the transmission
functions in the vicinity of the left and right Fermi levels.Comment: 4 pages; 2 figure
Rigidity of noncompact complete Bach-flat manifolds
Let be a noncompact complete Bach-flat manifold with positive Yamabe
constant. We prove that is flat if has zero scalar curvature
and sufficiently small bound of curvature tensor. When has
nonconstant scalar curvature, we prove that is conformal to the flat
space if has sufficiently small bound of curvature tensor and
bound of scalar curvature.Comment: 10 pages, To appear J. Geom. Physic
Chiral anomaly and anomalous finite-size conductivity in graphene
Graphene is a monolayer of carbon atoms packed into a hexagon lattice to host
two pairs of massless two-dimensional Dirac fermions in the absence of or with
negligible spin-orbit coupling. It is known that the existence of non-zero
electric polarization in reduced momentum space which is associated with a
hidden chiral symmetry will lead to the zero-energy flat band of zigzag
nanoribbon. The Adler-Bell-Jackiw chiral anomaly or non-conservation of chiral
charges at different valleys can be realized in a confined ribbon of finite
width. In the laterally diffusive regime, the finite-size correction to
conductivity is always positive and goes inversely with the square of the
lateral dimension W, which is different from the finite-size correction
inversely with W from boundary modes. This anomalous finite-size conductivity
reveals the signature of the chiral anomaly in graphene, and is measurable
experimentally.Comment: 5 pages, 2 figure
- …