350 research outputs found
Intercept Probability Analysis of Cooperative Wireless Networks with Best Relay Selection in the Presence of Eavesdropping Attack
Due to the broadcast nature of wireless medium, wireless communication is
extremely vulnerable to eavesdropping attack. Physical-layer security is
emerging as a new paradigm to prevent the eavesdropper from interception by
exploiting the physical characteristics of wireless channels, which has
recently attracted a lot of research attentions. In this paper, we consider the
physical-layer security in cooperative wireless networks with multiple
decode-and-forward (DF) relays and investigate the best relay selection in the
presence of eavesdropping attack. For the comparison purpose, we also examine
the conventional direct transmission without relay and traditional max-min
relay selection. We derive closed-form intercept probability expressions of the
direct transmission, traditional max-min relay selection, and proposed best
relay selection schemes in Rayleigh fading channels. Numerical results show
that the proposed best relay selection scheme strictly outperforms the
traditional direct transmission and max-min relay selection schemes in terms of
intercept probability. In addition, as the number of relays increases, the
intercept probabilities of both traditional max-min relay selection and
proposed best relay selection schemes decrease significantly, showing the
advantage of exploiting multiple relays against eavesdropping attack.Comment: 5 pages. arXiv admin note: substantial text overlap with
arXiv:1305.081
Optimal Relay Selection for Physical-Layer Security in Cooperative Wireless Networks
In this paper, we explore the physical-layer security in cooperative wireless
networks with multiple relays where both amplify-and-forward (AF) and
decode-and-forward (DF) protocols are considered. We propose the AF and DF
based optimal relay selection (i.e., AFbORS and DFbORS) schemes to improve the
wireless security against eavesdropping attack. For the purpose of comparison,
we examine the traditional AFbORS and DFbORS schemes, denoted by T-AFbORS and
TDFbORS, respectively. We also investigate a so-called multiple relay combining
(MRC) framework and present the traditional AF and DF based MRC schemes, called
T-AFbMRC and TDFbMRC, where multiple relays participate in forwarding the
source signal to destination which then combines its received signals from the
multiple relays. We derive closed-form intercept probability expressions of the
proposed AFbORS and DFbORS (i.e., P-AFbORS and P-DFbORS) as well as the
T-AFbORS, TDFbORS, T-AFbMRC and T-DFbMRC schemes in the presence of
eavesdropping attack. We further conduct an asymptotic intercept probability
analysis to evaluate the diversity order performance of relay selection schemes
and show that no matter which relaying protocol is considered (i.e., AF and
DF), the traditional and proposed optimal relay selection approaches both
achieve the diversity order M where M represents the number of relays. In
addition, numerical results show that for both AF and DF protocols, the
intercept probability performance of proposed optimal relay selection is
strictly better than that of the traditional relay selection and multiple relay
combining methods.Comment: 13 page
Physical-Layer Security with Multiuser Scheduling in Cognitive Radio Networks
In this paper, we consider a cognitive radio network that consists of one
cognitive base station (CBS) and multiple cognitive users (CUs) in the presence
of multiple eavesdroppers, where CUs transmit their data packets to CBS under a
primary user's quality of service (QoS) constraint while the eavesdroppers
attempt to intercept the cognitive transmissions from CUs to CBS. We
investigate the physical-layer security against eavesdropping attacks in the
cognitive radio network and propose the user scheduling scheme to achieve
multiuser diversity for improving the security level of cognitive transmissions
with a primary QoS constraint. Specifically, a cognitive user (CU) that
satisfies the primary QoS requirement and maximizes the achievable secrecy rate
of cognitive transmissions is scheduled to transmit its data packet. For the
comparison purpose, we also examine the traditional multiuser scheduling and
the artificial noise schemes. We analyze the achievable secrecy rate and
intercept probability of the traditional and proposed multiuser scheduling
schemes as well as the artificial noise scheme in Rayleigh fading environments.
Numerical results show that given a primary QoS constraint, the proposed
multiuser scheduling scheme generally outperforms the traditional multiuser
scheduling and the artificial noise schemes in terms of the achievable secrecy
rate and intercept probability. In addition, we derive the diversity order of
the proposed multiuser scheduling scheme through an asymptotic intercept
probability analysis and prove that the full diversity is obtained by using the
proposed multiuser scheduling.Comment: 12 pages. IEEE Transactions on Communications, 201
Security versus Reliability Analysis of Opportunistic Relaying
Physical-layer security is emerging as a promising paradigm of securing
wireless communications against eavesdropping between legitimate users, when
the main link spanning from source to destination has better propagation
conditions than the wiretap link from source to eavesdropper. In this paper, we
identify and analyze the tradeoffs between the security and reliability of
wireless communications in the presence of eavesdropping attacks. Typically,
the reliability of the main link can be improved by increasing the source's
transmit power (or decreasing its date rate) to reduce the outage probability,
which unfortunately increases the risk that an eavesdropper succeeds in
intercepting the source message through the wiretap link, since the outage
probability of the wiretap link also decreases when a higher transmit power (or
lower date rate) is used. We characterize the security-reliability tradeoffs
(SRT) of conventional direct transmission from source to destination in the
presence of an eavesdropper, where the security and reliability are quantified
in terms of the intercept probability by an eavesdropper and the outage
probability experienced at the destination, respectively. In order to improve
the SRT, we then propose opportunistic relay selection (ORS) and quantify the
attainable SRT improvement upon increasing the number of relays. It is shown
that given the maximum tolerable intercept probability, the outage probability
of our ORS scheme approaches zero for , where is the number
of relays. Conversely, given the maximum tolerable outage probability, the
intercept probability of our ORS scheme tends to zero for .Comment: 9 pages. IEEE Transactions on Vehicular Technology, 201
- β¦