26 research outputs found

    Nuclear astrophysics research based on HI-13 tandem accelerator

    No full text
    The first radioactive ion beam line, GIRAFFE, has been built at the CIAE HI-13 tandem accelerator in China. A total of eleven types of radioactive ion beam, including 6He, 7Be, and 8Li, have been generated. Several significant reactions in nuclear astrophysics have been indirectly measured via transfer reactions, and research on nuclear structure, relevant to nuclear astrophysics, has been performed using charge exchange reactions and thick-target experimental methods. A series of single nucleon or α cluster transfer reactions have been measured using a Q3D magnetic spectrometer, and the astrophysical S-factors and reaction rates for essential reactions have been obtained. The obtained results serve as a crucial experimental foundation for research involving element abundance and celestial body models

    Photonuclear reaction study with the (p,

    No full text
    The (p, γ) resonance is a good way to produce monoenergetic γ rays. It becomes an important tool for studying photonuclear reactions. In this work, 13C(p, γ)14N resonance is studied to produce 9.17 MeV γ ray using the 2 × 1.7 MV tandem accelerator at CIAE. The flux of 9.17 MeV γ was determined to be 2.3 × 105/s. 197Au photoneutron cross section was measured to be 45.4 ± 6.9 mb under the irradiation of 13C(p, γ)14N resonance γ -source. The value is close to the previous results. It certificates that we have developed an experimental method for photonuclear reaction study

    Photonuclear reaction study with the (p, γ) resonance γ-source

    Get PDF
    The (p, γ) resonance is a good way to produce monoenergetic γ rays. It becomes an important tool for studying photonuclear reactions. In this work, 13C(p, γ)14N resonance is studied to produce 9.17 MeV γ ray using the 2 × 1.7 MV tandem accelerator at CIAE. The flux of 9.17 MeV γ was determined to be 2.3 × 105/s. 197Au photoneutron cross section was measured to be 45.4 ± 6.9 mb under the irradiation of 13C(p, γ)14N resonance γ -source. The value is close to the previous results. It certificates that we have developed an experimental method for photonuclear reaction study

    DNA sensing by field-effect transistors based on networks of carbon nanotubes

    No full text
    We report on the sensing mechanism of electrical detection of deoxyribonucleic acid (DNA) hybridization for Au- and Cr-contacted field effect transistors based on single-walled carbon nanotube (SWCNT) networks. Barrier height extraction via low-temperature electrical measurement provides direct evidence for the notion that the energy level alignment between electrode and SWCNTs can be affected by DNA immobilization and hybridization. The study of location-selective capping using photoresist provides comprehensive evidence that the sensing of DNA is dominated by the change in metal−SWCNT junctions rather than the channel conductance

    The Proteomic Analysis of Maize Endosperm Protein Enriched by Phos-tag<sup>tm</sup> Reveals the Phosphorylation of Brittle-2 Subunit of ADP-Glc Pyrophosphorylase in Starch Biosynthesis Process

    No full text
    AGPase catalyzes a key rate-limiting step that converts ATP and Glc-1-p into ADP-glucose and diphosphate in maize starch biosynthesis. Previous studies suggest that AGPase is modulated by redox, thermal and allosteric regulation. However, the phosphorylation of AGPase is unclear in the kernel starch biosynthesis process. Phos-tagTM technology is a novel method using phos-tagTM agarose beads for separation, purification, and detection of phosphorylated proteins. Here we identified phos-tagTM agarose binding proteins from maize endosperm. Results showed a total of 1733 proteins identified from 10,678 distinct peptides. Interestingly, a total of 21 unique peptides for AGPase sub-unit Brittle-2 (Bt2) were identified. Bt2 was demonstrated by immunoblot when enriched maize endosperm protein with phos-tagTM agarose was in different pollination stages. In contrast, Bt2 would lose binding to phos-tagTM when samples were treated with alkaline phosphatase (ALP). Furthermore, Bt2 could be detected by Pro-Q diamond staining specifically for phosphorylated protein. We further identified the phosphorylation sites of Bt2 at Ser10, Thr451, and Thr462 by iTRAQ. In addition, dephosphorylation of Bt2 decreased the activity of AGPase in the native gel assay through ALP treatment. Taking together, these results strongly suggest that the phosphorylation of AGPase may be a new model to regulate AGPase activity in the starch biosynthesis process

    Measurement of the low energy

    No full text
    The cosmic 1.809 MeV γ-ray emitted by the radioactive nucleus 26Al in the Galaxy is one of the key observation targets of the γ-ray astronomy. The 26Al is mainly produced by the 25Mg(p,γ)26Al reaction in the stellar Mg-Al reaction cycle. At the astrophysical relevant temperatures, the reaction rates of 25Mg(p,γ)26Al are dominated by several narrow resonances at low energy. This work reports a measurement of the low energy 25Mg(p,γ)26Al resonances at Jinping Underground Nuclear Astrophysics experimental facility (JUNA) in the China Jinping Underground Laboratory (CJPL)

    Measurement of the

    No full text
    22Ne(α,n)25Mg is one of the main neutron sources of the s process. 22Ne is produced by the 14N(α, γ)18F(β+)18O(α, γ)22Ne reaction chain in the helium burning, thus, the production rate of 22Ne is dominated by 14N(α,γ)18F and 18O(α,γ)22Ne. At the astrophysical relevant temperatures, the 18O(α,γ)22Ne reaction rates are determined by several low-energy resonances. In this work, the 18O(α,γ)22Ne reaction was measured at the 400 kV accelerator of Jinping Underground Nuclear Astrophysics experiment (JUNA). The γ-ray yields of the resonances between 470 to 770 keV were obtained
    corecore