14,180 research outputs found

    Gravitomagnetic Field and Time-Dependent Spin-Rotation Coupling

    Get PDF
    The Kerr metric of spherically symmetric gravitational field is analyzed through the coordinate transformation from the rotating frame to fixing frame, and consequently that the inertial force field (with the exception of the centrifugal force field) in the rotating system is one part of its gravitomagnetic field is verified. We investigate the spin-rotation coupling and, by making use of Lewis-Riesenfeld invariant theory, we obtain exact solutions of the Schr\"{o}dinger equation of a spinning particle in a time-dependent rotating reference frame. A potential application of these exact solutions to the investigation of Earth,^{,}s rotating frequency fluctuation by means of neutron-gravity interferometry experiment is briefly discussed in the present paper.Comment: 6 pages, 0 figures, Late

    X(1576) and the Final State Interaction Effect

    Get PDF
    We study whether the broad peak X(1576) observed by BES Collaboration arises from the final state interaction effect of ρ(1450,1700)\rho(1450,1700) decays. The interference effect could produce an enhancement around 1540 MeV in the K+KK^+K^- spectrum with typical interference phases. However, the branching ratio B[J/ψπ0ρ(1450,1700)]B[ρ(1450,1700)K+K]B[J/\psi\to \pi^{0}\rho(1450,1700)]\cdot B[\rho(1450,1700)\to K^{+}K^{-}] from the final state interaction effect is far less than the experimental data.Comment: 6 pages, 4 figures. Some typos corrected, more discussion and references adde

    Testing RIAF model for Sgr A* using the size measurements

    Full text link
    Recent radio observations by the VLBA at 7 and 3.5 mm produced the high-resolution images of the compact radio source located at the center of our Galaxy--Sgr A*, and detected its wavelength-dependent intrinsic sizes at the two wavelengths. This provides us with a good chance of testing previously-proposed theoretical models for Sgr A*. In this {\em Letter}, we calculate the size based on the radiatively inefficient accretion flow (RIAF) model proposed by Yuan, Quataert & Narayan (2003). We find that the predicted sizes after taking into account the scattering of the interstellar electrons are consistent with the observations. We further predict an image of Sgr A* at 1.3 mm which can be tested by future observations.Comment: 10 pages, 1 figure; accepted by ApJ
    corecore