51,384 research outputs found

    Relativistic Equation of State for Core-Collapse Supernova Simulations

    Full text link
    We construct the equation of state (EOS) of dense matter covering a wide range of temperature, proton fraction, and density for the use of core-collapse supernova simulations. The study is based on the relativistic mean-field (RMF) theory, which can provide an excellent description of nuclear matter and finite nuclei. The Thomas--Fermi approximation in combination with assumed nucleon distribution functions and a free energy minimization is adopted to describe the non-uniform matter, which is composed of a lattice of heavy nuclei. We treat the uniform matter and non-uniform matter consistently using the same RMF theory. We present two sets of EOS tables, namely EOS2 and EOS3. EOS2 is an update of our earlier work published in 1998 (EOS1), where only the nucleon degree of freedom is taken into account. EOS3 includes additional contributions from Λ\Lambda hyperons. The effect of Λ\Lambda hyperons on the EOS is negligible in the low-temperature and low-density region, whereas it tends to soften the EOS at high density. In comparison with EOS1, EOS2 and EOS3 have an improved design of ranges and grids, which covers the temperature range T=0.1T=0.1--102.610^{2.6} MeV with the logarithmic grid spacing Δlog10(T/[MeV])=0.04\Delta \log_{10}(T/\rm{[MeV]})=0.04 (92 points including T=0), the proton fraction range Yp=0Y_p=0--0.65 with the linear grid spacing ΔYp=0.01\Delta Y_p = 0.01 (66 points), and the density range ρB=105.1\rho_B=10^{5.1}--1016gcm310^{16}\,\rm{g\,cm^{-3}} with the logarithmic grid spacing Δlog10(ρB/[gcm3])=0.1\Delta \log_{10}(\rho_B/\rm{[g\,cm^{-3}]}) = 0.1 (110 points).Comment: 43 pages, 10 figure

    Relativistic Equation of State of Nuclear Matter for Supernova Explosion

    Get PDF
    We construct the equation of state (EOS) of nuclear matter at finite temperature and density with various proton fractions within the relativistic mean field (RMF) theory for the use in the supernova simulations. The Thomas-Fermi approximation is adopted to describe the non-uniform matter where we consider nucleus, alpha-particle, proton and neutron in equilibrium. We treat the uniform matter and non-uniform matter consistently using the RMF theory. We tabulate the outcome as the pressure, free energy, entropy etc, with enough mesh points in wide ranges of the temperature, proton fraction, and baryon mass density.Comment: 22 pages, LaTeX, 9 ps-figures, Submitted to Prog.Theor.Phy

    Complete relativistic equation of state for neutron stars

    Get PDF
    We construct the equation of state (EOS) in a wide density range for neutron stars using the relativistic mean field theory. The properties of neutron star matter with both uniform and non-uniform distributions are studied consistently. The inclusion of hyperons considerably softens the EOS at high densities. The Thomas-Fermi approximation is used to describe the non-uniform matter, which is composed of a lattice of heavy nuclei. The phase transition from uniform matter to non-uniform matter occurs around 0.06fm30.06 \rm{fm^{-3}}, and the free neutrons drip out of nuclei at about $2.4 \times 10^{-4}\ \rm{fm^{-3}}$. We apply the resulting EOS to investigate the neutron star properties such as maximum mass and composition of neutron stars.Comment: 23 pages, REVTeX, 9 ps figures, to appear in Phys. Rev.

    A competing order scenario of two-gap behavior in hole doped cuprates

    Full text link
    Angle-dependent studies of the gap function provide evidence for the coexistence of two distinct gaps in hole doped cuprates, where the gap near the nodal direction scales with the superconducting transition temperature TcT_c, while that in the antinodal direction scales with the pseudogap temperature. We present model calculations which show that most of the characteristic features observed in the recent angle-resolved photoemission spectroscopy (ARPES) as well as scanning tunneling microscopy (STM) two-gap studies are consistent with a scenario in which the pseudogap has a non-superconducting origin in a competing phase. Our analysis indicates that, near optimal doping, superconductivity can quench the competing order at low temperatures, and that some of the key differences observed between the STM and ARPES results can give insight into the superlattice symmetry of the competing order.Comment: 9 pages, 7 fig

    Chiral Sigma Model with Pion Mean Field in Finite Nuclei

    Full text link
    The properties of infinite matter and finite nuclei are studied by using the chiral sigma model in the framework of the relativistic mean field theory. We reconstruct an extended chiral sigma model in which the omega meson mass is generated dynamically by the sigma condensation in the vacuum in the same way as the nucleon mass. All the parameters of chiral sigma model are essentially fixed from the hadron properties in the free space. In nuclear matter, the saturation property comes out right, but the incompressibility is too large and the scalar and vector potentials are about a half of the phenomenological ones, respectively. This fact is reflected to the properties of finite nuclei. We calculate N = Z even-even mass nuclei between N = 16 and N = 34. The extended chiral sigma model without the pion mean field leads to the result that the magic number appears at N = 18 instead of N = 20 and the magic number does not appear at N = 28 due to the above mentioned nuclear matter properties. The latter problem, however, could be removed by the introduction of the finite pion mean field with the appearance of the magic number at N = 28. We find that the energy differences between the spin-orbit partners are reproduced by the finite pion mean field which is completely a different mechanism from the standard spin-orbit interaction.Comment: 19 pages, 9 figures. Prog. Theor. Phys. to be publishe

    Transcoding proxy placement in en-route web caching

    Get PDF
    Copyright © 2004 IEEEWith the rapid growth of audio and video applications on the internet, caching media objects in transcoding proxies has become an important research topic in recent years. In this paper, we address the problem of finding the optimal locations for placing fixed number of transcoding proxies among the nodes in a network such that the specified objective is achieved. We present an original model for this problem, which makes transcoding proxy placement decisions on all the en-route nodes along the routing path in a coordinated way. In our model, proxy status information along the routing path of requests is used for optimally determining the locations for placing fixed number of transcoding proxies. We formulate this problem as an optimization problem and the optimal locations are obtained using a low-cost dynamic programming-based algorithm. We implement our algorithm and evaluate our model on different performance metrics through extensive simulation experiments. The implementation results show that our model significantly outperforms the random algorithm which places transcoding proxies among the nodes in a network randomly.Keqiu Li, Hong She

    Coordinated en-route transcoding caching for tree networks

    Get PDF
    ©2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.As transcoding caching is attracting an increasing amount of attention, it is important and necessary to find methods to distribute multiple versions of the same media object in the Internet. In this paper, we first present a mathematical model for the problem of optimally determining the locations in which to place multiple versions of the same media object in tree networks such that the specified objective is achieved. This problem is formulated as an optimization problem. Second, we propose a low-cost dynamic programming-based solution for solving this problem, by which the optimal locations are obtained. Finally, we evaluate our model on different performance metrics through extensive simulation experiments and compare the results of our model with those of existing models that consider transcoding caching either on a path or at individual nodes only.Keqiu Li, Hong She
    corecore