6 research outputs found

    LEARNING VISUAL ATTENTION WITH DEEP NEURAL NETWORKS

    No full text
    Ph.DDOCTOR OF PHILOSOPH

    A 1.66Gb/s and 5.8pJ/b Transcutaneous IR-UWB Telemetry System with Hybrid Impulse Modulation for Intracortical Brain-Computer Interfaces

    No full text
    Intra-cortical extracellular neural sensing is being rapidly and widely applied in several clinical research and brain-computer interfaces (BCIs), as the number of sensing channels continues to double every 6 years. By distributing multiple high-density extracellular micro-electrode arrays (MEAs) in vivo across the brain, each with 1000's of sensing channels, neuroscientists have begun to map the correlation of neuronal activity across different brain regions, with single-neuron precision [1]. Since each neural sensing channel typically samples at 20 to 50kS/s with a > 10b ADC, multiple MEAs demand a data transfer rate up to Gb/s [2]. However, these BCIs are severely hindered in many clinical uses due to the lack of a high-data-rate and miniature-wireless-telemetry solution that can be implanted below the scalp, i.e., transcutaneously (Fig. 24.2.1). The area of the wireless telemetry module should be miniaturized to ~3cm2 due to neurosurgical implantation constraints. A transmission range up to 10cm is highly desirable, in order to improve the reliability of the wireless link against e.g., antenna misalignment, etc. Finally, the power consumption of the wireless telemetry should be limited to ~10mW to minimize thermal flux from the module's surface area, avoiding excessive tissue heating. Most of the conventional transcutaneous wireless telemetry systems adopt inductive coupling, but the data-rate is limited to a few Mb/s. A near-infrared (NIR) optical transcutaneous TX using a vertical-cavity-surface-emitting laser (VCSEL) [2] demonstrated a data-rate up to 300Mb/s but suffers from a limited transmission range (4mm) and requires a sub-mm precise alignment between the implant TX and a wearable RX. Impulse-radio UWB (IR-UWB) is promising for the targeted requirements [3]–[5].Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Electronic

    Understanding visual saliency in mobile user interfaces

    No full text
    | openaire: EC/H2020/637991/EU//COMPUTEDFor graphical user interface (UI) design, it is important to understand what attracts visual attention. While previous work on saliency has focused on desktop and web-based UIs, mobile app UIs differ from these in several respects. We present findings from a controlled study with 30 participants and 193 mobile UIs. The results speak to a role of expectations in guiding where users look at. Strong bias toward the top-left corner of the display, text, and images was evident, while bottom-up features such as color or size affected saliency less. Classic, parameter-free saliency models showed a weak fit with the data, and data-driven models improved significantly when trained specifically on this dataset (e.g., NSS rose from 0.66 to 0.84). We also release the first annotated dataset for investigating visual saliency in mobile UIs.Peer reviewe

    Myxobacteria restrain Phytophthora invasion by scavenging thiamine in soybean rhizosphere via outer membrane vesicle-secreted thiaminase I

    No full text
    Abstract Public metabolites such as vitamins play critical roles in maintaining the ecological functions of microbial community. However, the biochemical and physiological bases for fine-tuning of public metabolites in the microbiome remain poorly understood. Here, we examine the interactions between myxobacteria and Phytophthora sojae, an oomycete pathogen of soybean. We find that host plant and soil microbes complement P. sojae’s auxotrophy for thiamine. Whereas, myxobacteria inhibits Phytophthora growth by a thiaminase I CcThi1 secreted into extracellular environment via outer membrane vesicles (OMVs). CcThi1 scavenges the required thiamine and thus arrests the thiamine sharing behavior of P. sojae from the supplier, which interferes with amino acid metabolism and expression of pathogenic effectors, probably leading to impairment of P. sojae growth and pathogenicity. Moreover, myxobacteria and CcThi1 are highly effective in regulating the thiamine levels in soil, which is correlated with the incidence of soybean Phytophthora root rot. Our findings unravel a novel ecological tactic employed by myxobacteria to maintain the interspecific equilibrium in soil microbial community
    corecore