54 research outputs found

    Observational Study Of the Quasi-Periodic Fast Propagating Magnetosonic Waves and the Associated Flare on 2011 May 30

    Full text link
    On 2011 May 30, quasi-periodic fast propagating (QFP) magnetosonic waves accompanied by a C2.8 flare were directly imaged by the Atomospheric Imaging Assembly instrument on board the Solar Dynamics Observatory. The QFP waves successively emanated from the flare kernel, they propagated along a cluster of open coronal loops with a phase speed of 834 km/s during the flare's rising phase, and the multiple arc-shaped wave trains can be fitted with a series of concentric circles. We generate the k-omega diagram of the Fourier power and find a straight ridge that represents the dispersion relation of the waves. Along the ridge, we find a lot of prominent nodes which represent the available frequencies of the QFP waves. On the other hand, the frequencies of the flare are also obtained by analyzing the flare light curves using the wavelet technique. The results indicate that almost all the main frequencies of the flare are consistent with those of the QFP waves. This suggests that the flare and the QFP waves were possibly excited by a common physical origin. On the other hand, a few low frequencies revealed by the k-omega diagram can not be found in the accompanying flare. We propose that these low frequencies were possibly due to the leakage of the pressure-driven p-mode oscillations from the photosphere into the low corona, which should be a noticeable mechanism for driving the QFP waves observed in the corona.Comment: Published in Ap

    Simultaneous Observations of a Large-Scale Wave Event in the Solar Atmosphere: From Photosphere to Corona

    Full text link
    For the first time, we report a large-scale wave that was observed simultaneously in the photosphere, chromosphere, transition region and low corona layers of the solar atmosphere. Using the high temporal and high spatial resolution observations taken by the Solar Magnetic Activity Research Telescope at Hida Observatory and the Atmospheric Imaging Assembly (AIA) onboard Solar Dynamic Observatory, we find that the wave evolved synchronously at different heights of the solar atmosphere, and it propagated at a speed of 605 km/s and showed a significant deceleration (-424 m/s2) in the extreme-ultraviolet (EUV) observations. During the initial stage, the wave speed in the EUV observations was 1000 km/s, similar to those measured from the AIA 1700 {\AA} (967 km/s) and 1600 {\AA} (893 km/s) observations. The wave was reflected by a remote region with open fields, and a slower wave-like feature at a speed of 220 km/s was also identified following the primary fast wave. In addition, a type-II radio burst was observed to be associated with the wave. We conclude that this wave should be a fast magnetosonic shock wave, which was firstly driven by the associated coronal mass ejection and then propagated freely in the corona. As the shock wave propagated, its legs swept the solar surface and thereby resulted in the wave signatures observed in the lower layers of the solar atmosphere. The slower wave-like structure following the primary wave was probably caused by the reconfiguration of the low coronal magnetic fields, as predicted in the field-line stretching model.Comment: Published in ApJ

    Measuring three-dimensional shapes of stable solar prominences using stereoscopic observations from SDO and STEREO

    Full text link
    Although the real shapes and trajectories of erupting solar prominences in three dimensions have been intensively studied, the three-dimensional (3D) shapes of stable prominences before eruptions have not been measured accurately so far. We intend to make such a measurement to constrain 3D prominence models and to extend our knowledge of prominences. Using multiperspective observations from the Atmospheric Imaging Assembly on board SDO and the Extreme Ultraviolet Imager on board STEREO, we reconstructed 3D coordinates of three stable prominences: a quiescent, an intermediate, and a mixed type. Based on the 3D coordinates, we measured the height, length, and inclination angle of the legs of these prominences. To study the spatial relationship between the footpoints of prominences and photospheric magnetic structures, we also used the Global Oscillation Network Group H alpha images and magnetograms from the HMI on board the SDO. In three stable prominences, we find that the axes of the prominence legs are inclined by 68 degrees on average to the solar surface. Legs at different locations along a prominence axis have different heights with a two- to threefold difference. Our investigation suggests that over 96% of prominence footpoints in a sample of 70 footpoints are located at supergranular boundaries. The widths of two legs have similar values measured in two orthogonal lines of sight. We also find that a prominence leg above the solar limb showed horizontal oscillations with larger amplitudes at higher locations. With a limited image resolution and number of cases, our measurement suggests that the legs of prominences may have various orientations and do not always stand vertically on the surface of the sun. Moreover, the locations of prominence legs are closely related to supergranules.Comment: 11 figure
    • …
    corecore