186 research outputs found

    Energy-Efficient Non-Orthogonal Transmission under Reliability and Finite Blocklength Constraints

    Full text link
    This paper investigates an energy-efficient non-orthogonal transmission design problem for two downlink receivers that have strict reliability and finite blocklength (latency) constraints. The Shannon capacity formula widely used in traditional designs needs the assumption of infinite blocklength and thus is no longer appropriate. We adopt the newly finite blocklength coding capacity formula for explicitly specifying the trade-off between reliability and code blocklength. However, conventional successive interference cancellation (SIC) may become infeasible due to heterogeneous blocklengths. We thus consider several scenarios with different channel conditions and with/without SIC. By carefully examining the problem structure, we present in closed-form the optimal power and code blocklength for energy-efficient transmissions. Simulation results provide interesting insights into conditions for which non-orthogonal transmission is more energy efficient than the orthogonal transmission such as TDMA.Comment: accepted by IEEE GlobeCom workshop on URLLC, 201

    U.S.–China trade war and corporate reallocation:Evidence from Chinese listed companies

    Get PDF
    This paper applies a difference-in-differences framework to explore the economic consequences of the recent U.S.–China trade war. The average abnormal returns of Chinese listed firms during a period centered on President Trump's announcement on 22 March 2018 are taken as a proxy for the firms' exposure to the potential trade war. Firms more negatively exposed are found, surprisingly, to report higher total revenues in the post-announcement period. The results indicate that the Chinese firms tend to reallocate their business from overseas to the domestic market. Such within-firm reallocation is found to be more pronounced among private firms, exporting firms and non-FDI firms. Besides, firms with higher negative exposure increase total investment and financing but decrease foreign investment after the trade war

    MLF-DET: Multi-Level Fusion for Cross-Modal 3D Object Detection

    Full text link
    In this paper, we propose a novel and effective Multi-Level Fusion network, named as MLF-DET, for high-performance cross-modal 3D object DETection, which integrates both the feature-level fusion and decision-level fusion to fully utilize the information in the image. For the feature-level fusion, we present the Multi-scale Voxel Image fusion (MVI) module, which densely aligns multi-scale voxel features with image features. For the decision-level fusion, we propose the lightweight Feature-cued Confidence Rectification (FCR) module which further exploits image semantics to rectify the confidence of detection candidates. Besides, we design an effective data augmentation strategy termed Occlusion-aware GT Sampling (OGS) to reserve more sampled objects in the training scenes, so as to reduce overfitting. Extensive experiments on the KITTI dataset demonstrate the effectiveness of our method. Notably, on the extremely competitive KITTI car 3D object detection benchmark, our method reaches 82.89% moderate AP and achieves state-of-the-art performance without bells and whistles

    Developing Dipole-scheme Heterojunction Photocatalysts

    Full text link
    The high recombination rate of photogenerated carriers is the bottleneck of photocatalysis, severely limiting the photocatalytic efficiency. Here, we develop a dipole-scheme (D-scheme for short) photocatalytic model and materials realization. The D-scheme heterojunction not only can effectively separate electrons and holes by a large polarization field, but also boosts photocatalytic redox reactions with large driving photovoltages and without any carrier loss. By means of first-principles and GW calculations, we propose a D-scheme heterojunction prototype with two real polar materials, PtSeTe/LiGaS2. This D-scheme photocatalyst exhibits a high capability of the photogenerated carrier separation and near-infrared light absorption. Moreover, our calculations of the Gibbs free energy imply a high ability of the hydrogen and oxygen evolution reaction by a large driving force. The proposed D-scheme photocatalytic model is generalized and paves a valuable route of significantly improving the photocatalytic efficiency.Comment: 10 pages, 5 figure
    • …
    corecore