79 research outputs found

    Uncertainty-informed Mutual Learning for Joint Medical Image Classification and Segmentation

    Full text link
    Classification and segmentation are crucial in medical image analysis as they enable accurate diagnosis and disease monitoring. However, current methods often prioritize the mutual learning features and shared model parameters, while neglecting the reliability of features and performances. In this paper, we propose a novel Uncertainty-informed Mutual Learning (UML) framework for reliable and interpretable medical image analysis. Our UML introduces reliability to joint classification and segmentation tasks, leveraging mutual learning with uncertainty to improve performance. To achieve this, we first use evidential deep learning to provide image-level and pixel-wise confidences. Then, an Uncertainty Navigator Decoder is constructed for better using mutual features and generating segmentation results. Besides, an Uncertainty Instructor is proposed to screen reliable masks for classification. Overall, UML could produce confidence estimation in features and performance for each link (classification and segmentation). The experiments on the public datasets demonstrate that our UML outperforms existing methods in terms of both accuracy and robustness. Our UML has the potential to explore the development of more reliable and explainable medical image analysis models. We will release the codes for reproduction after acceptance.Comment: 13 page

    Subcellular Localization and RNA Interference of an RNA Methyltransferase Gene from Silkworm, Bombyx Mori

    Get PDF
    RNA methylation, which is a form of posttranscriptional modification, is catalyzed by S-adenosyl-L-methionone-dependent RNA methyltransterases (RNA MTases). We have identified a novel silkworm gene, BmRNAMTase, containing a 369-bp open reading frame that encodes a putative protein containing 122 amino acid residues and having a molecular weight of 13.88 kd. We expressed a recombinant His-tagged BmRNAMTase in E. coli BL21 (DE3), purified the fusion protein by metal-chelation affinity chromatography, and injected a New Zealand rabbit with the purified protein to generate anti-BmRNAMTase polyclonal antibodies. Immunohistochemistry revealed that BmRNAMTase is abundant in the cytoplasm of Bm5 cells. In addition, using RNA interference to reduce the intracellular activity and content of BmRNAMTase, we determined that this cytoplasmic RNA methyltransferase may be involved in preventing cell death in the silkworm
    corecore