2,255 research outputs found

    Adversarial PoseNet: A Structure-aware Convolutional Network for Human Pose Estimation

    Full text link
    For human pose estimation in monocular images, joint occlusions and overlapping upon human bodies often result in deviated pose predictions. Under these circumstances, biologically implausible pose predictions may be produced. In contrast, human vision is able to predict poses by exploiting geometric constraints of joint inter-connectivity. To address the problem by incorporating priors about the structure of human bodies, we propose a novel structure-aware convolutional network to implicitly take such priors into account during training of the deep network. Explicit learning of such constraints is typically challenging. Instead, we design discriminators to distinguish the real poses from the fake ones (such as biologically implausible ones). If the pose generator (G) generates results that the discriminator fails to distinguish from real ones, the network successfully learns the priors.Comment: Fixed typos. 14 pages. Demonstration videos are http://v.qq.com/x/page/c039862eira.html, http://v.qq.com/x/page/f0398zcvkl5.html, http://v.qq.com/x/page/w0398ei9m1r.htm

    Completion of the Ablowitz-Kaup-Newell-Segur integrable coupling

    Full text link
    Integrable couplings are associated with non-semisimple Lie algebras. In this paper, we propose a new method to generate new integrable systems through making perturbation in matrix spectral problems for integrable couplings, which is called the `completion process of integrable couplings'. As an example, the idea of construction is applied to the Ablowitz-Kaup-Newell-Segur integrable coupling. Each equation in the resulting hierarchy has a bi-Hamiltonian structure furnished by the component-trace identity
    • …
    corecore