66 research outputs found
Bayesian Methods in Tensor Analysis
Tensors, also known as multidimensional arrays, are useful data structures in
machine learning and statistics. In recent years, Bayesian methods have emerged
as a popular direction for analyzing tensor-valued data since they provide a
convenient way to introduce sparsity into the model and conduct uncertainty
quantification. In this article, we provide an overview of frequentist and
Bayesian methods for solving tensor completion and regression problems, with a
focus on Bayesian methods. We review common Bayesian tensor approaches
including model formulation, prior assignment, posterior computation, and
theoretical properties. We also discuss potential future directions in this
field.Comment: 32 pages, 8 figures, 2 table
- …