3,147 research outputs found

    A new view of nonlinear water waves: the Hilbert spectrum

    Get PDF
    We survey the newly developed Hilbert spectral analysis method and its applications to Stokes waves, nonlinear wave evolution processes, the spectral form of the random wave field, and turbulence. Our emphasis is on the inadequacy of presently available methods in nonlinear and nonstationary data analysis. Hilbert spectral analysis is here proposed as an alternative. This new method provides not only a more precise definition of particular events in time-frequency space than wavelet analysis, but also more physically meaningful interpretations of the underlying dynamic processes

    Cavitation scaling experiments with headforms : bubble dynamics

    Get PDF
    Utilizing some novel instrumentation which allowed detection and location of individual cavitation bubbles in flows around headforms. Ceccio and Brennen (1991 and 1989) recently examined the interaction between individual bubbles and the structure of the boundary layer and flow field in which the bubble is growing and collapsing. They were able to show that individual bubbles are often fissioned by the fluid shear and that this process can significantly effect the acoustic signal produced by the collapse. Furthermore they were able to demonstrate a relationship between the number of cavitation events and the nuclei number distribution measured by holographic methods in the upstream flow. More recently Kumar and Brenncn (1991-1992) have closely examined further statistical properties of the acoustical signals from individual cavitation bubbles on two different headformsm in order to learn more about the bubble/flow interactions. However the above experiments were all conducted in the same facility with the same size of headform (5.08cm in diameter) and over a fairly narrow range of flow velocities (around 9m/s). Clearly this raises the issue of how the phenomena identified in those earlier experiments change with changes of speed, scale and facility. The present paper will describe experiments conducted in order to try to answer some of these important qucstions regarding the scaling of the cavitation phenomena. We present data from experiments conducted in the Large Cavitation Channel of the David Taylor Research Center in Memphis, Tennessee, on similar headforms which are 5.08, 25.4 and 50.8cm in diameter for speeds ranging up to 15m/s and for a range of cavitation numbers. In this paper we focus on visual observations of the cavitation patterns and changes in these patterns with speed and headform size

    Cavitation Scaling Experiments with Axisymmetric Bodies

    Get PDF
    Several experiments by Ceccio and Brennen (1991, 1989) and Kumar and Brennen (1992, 1991) have closely examined the interaction between individual cavitation bubbles and the boundary layer, as well as statistical properties of the acoustical signals produced by the bubble collapse. All of these experiments were, however, conducted in the same facility with the same headform size (5.08cm in diameter) and over a fairly narrow range of flow velocities (around 9m/s). Clearly this raises the issue of how the phenomena identified change with speed, scale and facility. The present paper describes experiments conducted in order to try to answer some of these important questions regarding the scaling of the cavitation phenomena. The experiments were conducted in the Large Cavitation Channel of the David Taylor Research Center in Memphis Tennessee, on geometrically similar Schiebe headforms which are 5.08, 25.4 and 50.8cm in diameter for speeds ranging up to 15m/s and for a range of cavitation numbers

    Identifying targets of the Sox domain protein Dichaete in the Drosophila CNS via targeted expression of dominant negative proteins.

    Get PDF
    BACKGROUND: Group B Sox domain transcription factors play important roles in metazoan central nervous system development. They are, however, difficult to study as mutations often have pleiotropic effects and other Sox family members can mask phenotypes due to functional compensation. In Drosophila melanogaster, the Sox gene Dichaete is dynamically expressed in the embryonic CNS, where it is known to have functional roles in neuroblasts and the ventral midline. In this study, we use inducible dominant negative proteins in combination with ChIP, immunohistochemistry and genome-wide expression profiling to further dissect the role of Dichaete in these two tissues. RESULTS: We generated two dominant negative Dichaete constructs, one lacking a DNA binding domain and the other fused to the Engrailed transcriptional repressor domain. We expressed these tissue-specifically in the midline and in neuroblasts using the UAS/GAL4 system, validating their use at the phenotypic level and with known target genes. Using ChIP and immunohistochemistry, we identified two new likely direct Dichaete target genes, commisureless in the midline and asense in the neuroectoderm. We performed genome-wide expression profiling in stage 8-9 embryos, identifying almost a thousand potential tissue-specific Dichaete targets, with half of these genes showing evidence of Dichaete binding in vivo. These include a number of genes with known roles in CNS development, including several components of the Notch, Wnt and EGFR signalling pathways. CONCLUSIONS: As well as identifying commisureless as a target, our data indicate that Dichaete helps establish its expression during early midline development but has less effect on its established later expression, highlighting Dichaete action on tissue specific enhancers. An analysis of the broader range of candidate Dichaete targets indicates that Dichaete plays diverse roles in CNS development, with the 500 or so Dichaete-bound putative targets including a number of transcription factors, signalling pathway components and terminal differentiation genes. In the early neurectoderm we implicate Dichaete in the lateral inhibition pathway and show that Dichaete acts to repress the proneural gene asense. Our analysis also reveals that dominant negatives cause off-target effects, highlighting the need to use other experimental data for validating findings from dominant negative studies.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
    • …
    corecore