2,753 research outputs found

    Group Size and Social Conflict in Complex Societies

    Get PDF
    Conflicts of interest over resources or reproduction among individuals in a social group have long been considered to result in automatic and universal costs to group living. However, exploring how social conflict varies with group size has produced mixed empirical results. Here we develop a model that generates alternative predictions for how social conflict should vary with group size depending on the type of benefits gained from being in a social group. We show that a positive relationship between social conflict and group size is favored when groups form primarily for the benefits of sociality but not when groups form mainly for accessing group-defended resources. Thus, increased social conflict in animal societies should not be viewed as an automatic cost of larger social groups. Instead, studying the relationship between social conflict and the types of grouping benefits will be crucial for understanding the evolution of complex societies

    Dissonance in harmony: The UV/optical periodic outbursts of ASASSN-14ko exhibit repeated bumps and rebrightenings

    Full text link
    ASASSN-14ko was identified as an abnormal periodic nuclear transient with a potential decreasing period. Its outbursts in the optical and UV bands have displayed a consistent and smooth "fast-rise and slow-decay" pattern since its discovery, which has recently experienced an unexpected alteration in the last two epochs, as revealed by our proposed high-cadence Swift observations. The new light curve profiles show a bump during the rising stages and a rebrightening during the declining stages, making them much broader and symmetrical than the previous ones. In the last two epochs, there is no significant difference in the X-ray spectral slope compared to the previous one, and its overall luminosity is lower than those of the previous epochs. The energy released in the early bump and rebrightening phases (1050\sim10^{50} erg) could be due to collision of the stripped stream from partial tidal disruption events (pTDEs) with an expanded accretion disk. We also discussed other potential explanations, such as disk instability and star-disk collisions. Further high-cadence multi-wavelength observations of subsequent cycles are encouraged to comprehend the unique periodic source with its new intriguing features.Comment: Accepted for publication in ApJL, 10 pages, 6 figure

    Angiogenesis and Vasculogenesis at 7-Day of Reperfused Acute Myocardial Infarction

    Get PDF
    Objectives 
This study is to investigate the angiogenesis and vasculogenesis at the first week of reperfused acute myocardial infarction (AMI).
Methods 
16 of mini-swines (20 to 30 Kg) were randomly assigned to the sham-operated group and the AMI group. The acute myocardial infarction and reperfusion model was created and the pig tail catheter was performed to monitor hemodynamics before left anterior descending coronary artery (LAD) occlusion, 90 min of LAD occlusion and 120 min of LAD reperfusion. Pathologic myocardial tissue was collected at 7-day of LAD reperfusion and further assessed by immunochemistry, dual immunochemistry, in-situ hybridization, real-time quantitative polymerase chain reaction and western blot. 
Results 
The infarcted area had higher FLK1 mRNA expression than sham-operated area and the normal area (all P<0.05), and the infarcted and marginal areas showed higher CD146 protein expression than the sham-operated area (all P<0.05), but the microvessel density (CD31 positive expression of microvessels/HP) was not significantly different between the infarcted area and the sham-operated area (8.92±3.05 vs 6.43±1.54) at 7-day of reperfused acute myocardial infarction (P>0.05). 
Conclusions 
FLK1 and CD146 expression significantly increase in the infarcted and marginal areas, and the microvessel density is not significantly different between the infarcted area and the sham-operated area, suggesting that angiogenesis and vasculogenesis in the infarcted area appear to high frequency of increase in 7-day of reperfused myocardial infarction. 
&#xa

    Ethyl 7-(4-bromo­phen­yl)-5-trifluoro­methyl-4,7-dihydro­tetra­zolo[1,5-a]pyrimidine-6-carboxyl­ate

    Get PDF
    In the title compound, C14H11BrF3N5O2, the pyrimidine ring adopts a flattened envelope conformation with sp 3-hybridized carbon as the flap [deviation = 0.177 (3) Å]. The dihedral angle between tetra­zole and bromo­phenyl rings is 84.3 (1)°. In the crystal, mol­ecules are linked into centrosymmetric dimers by pairs of N—H⋯N hydrogen bonds

    A Quantization-Friendly Separable Convolution for MobileNets

    Full text link
    As deep learning (DL) is being rapidly pushed to edge computing, researchers invented various ways to make inference computation more efficient on mobile/IoT devices, such as network pruning, parameter compression, and etc. Quantization, as one of the key approaches, can effectively offload GPU, and make it possible to deploy DL on fixed-point pipeline. Unfortunately, not all existing networks design are friendly to quantization. For example, the popular lightweight MobileNetV1, while it successfully reduces parameter size and computation latency with separable convolution, our experiment shows its quantized models have large accuracy gap against its float point models. To resolve this, we analyzed the root cause of quantization loss and proposed a quantization-friendly separable convolution architecture. By evaluating the image classification task on ImageNet2012 dataset, our modified MobileNetV1 model can archive 8-bit inference top-1 accuracy in 68.03%, almost closed the gap to the float pipeline.Comment: Accepted At THE 1ST WORKSHOP ON ENERGY EFFICIENT MACHINE LEARNING AND COGNITIVE COMPUTING FOR EMBEDDED APPLICATIONS (EMC^2 2018

    5′-Amino-2-oxo-2′,3′-dihydro­spiro­[indoline-3,7′-thieno[3,2-b]pyran]-6′-carbonitrile 1′,1′-dioxide

    Get PDF
    In the title compound, C15H11N3O4S, the dihedral angle between the mean planes of the dihydro­indol-2-one (r.m.s. deviation = 0.015 Å) and dihydro­thieno[3,2-b]pyran (r.m.s. deviation = 0.011 Å) ring systems is 89.53 (3)°. The crytal packing is consolidated by inter­molecular N—H⋯O and N—H⋯N hydrogen bonds, which link the mol­ecules into a two-dimensional network into sheets lying parallel to (100)
    corecore