657 research outputs found
Stochastic Answer Networks for Machine Reading Comprehension
We propose a simple yet robust stochastic answer network (SAN) that simulates
multi-step reasoning in machine reading comprehension. Compared to previous
work such as ReasoNet which used reinforcement learning to determine the number
of steps, the unique feature is the use of a kind of stochastic prediction
dropout on the answer module (final layer) of the neural network during the
training. We show that this simple trick improves robustness and achieves
results competitive to the state-of-the-art on the Stanford Question Answering
Dataset (SQuAD), the Adversarial SQuAD, and the Microsoft MAchine Reading
COmprehension Dataset (MS MARCO).Comment: 11 pages, 5 figures, Accepted to ACL 201
Language-Based Image Editing with Recurrent Attentive Models
We investigate the problem of Language-Based Image Editing (LBIE). Given a
source image and a natural language description, we want to generate a target
image by editing the source image based on the description. We propose a
generic modeling framework for two sub-tasks of LBIE: language-based image
segmentation and image colorization. The framework uses recurrent attentive
models to fuse image and language features. Instead of using a fixed step size,
we introduce for each region of the image a termination gate to dynamically
determine after each inference step whether to continue extrapolating
additional information from the textual description. The effectiveness of the
framework is validated on three datasets. First, we introduce a synthetic
dataset, called CoSaL, to evaluate the end-to-end performance of our LBIE
system. Second, we show that the framework leads to state-of-the-art
performance on image segmentation on the ReferIt dataset. Third, we present the
first language-based colorization result on the Oxford-102 Flowers dataset.Comment: Accepted to CVPR 2018 as a Spotligh
- …