62,025 research outputs found
Finite-horizon H∞ control for discrete time-varying systems with randomly occurring nonlinearities and fading measurements
This technical note deals with the H∞ control problem for a class of discrete time-varying nonlinear systems with both randomly occurring nonlinearities and fading measurements over a finite-horizon. The system measurements are transmitted through fading channels described by a modified stochastic Rice fading model. The purpose of the addressed problem is to design a set of time-varying controllers such that, in the presence of channel fading and randomly occurring nonlinearities, the H∞ performance is guaranteed over a given finite-horizon. The model transformation technique is first employed to simplify the addressed problem, and then the stochastic analysis in combination with the completing squares method are carried out to obtain necessary and sufficient conditions of an auxiliary index which is closely related to the finite-horizon H∞ performance. Moreover, the time-varying controller parameters are characterized via solving coupled backward recursive Riccati difference equations (RDEs). A simulation example is utilized to illustrate the usefulness of the proposed controller design scheme
Prostate Biopsy Assistance System with Gland Deformation Estimation for Enhanced Precision
Computer-assisted prostate biopsies became a very active research area during
the last years. Prostate tracking makes it possi- ble to overcome several
drawbacks of the current standard transrectal ultrasound (TRUS) biopsy
procedure, namely the insufficient targeting accuracy which may lead to a
biopsy distribution of poor quality, the very approximate knowledge about the
actual location of the sampled tissues which makes it difficult to implement
focal therapy strategies based on biopsy results, and finally the difficulty to
precisely reach non-ultrasound (US) targets stemming from different modalities,
statistical atlases or previous biopsy series. The prostate tracking systems
presented so far are limited to rigid transformation tracking. However, the
gland can get considerably deformed during the intervention because of US probe
pres- sure and patient movements. We propose to use 3D US combined with
image-based elastic registration to estimate these deformations. A fast elastic
registration algorithm that copes with the frequently occurring US shadows is
presented. A patient cohort study was performed, which yielded a statistically
significant in-vivo accuracy of 0.83+-0.54mm.Comment: This version of the paper integrates a correction concerning the
local similarity measure w.r.t. the proceedings (this typing error could not
be corrected before editing the proceedings
Shock wave induced vaporization of porous solids
Strong shock waves generated by hypervelocity impact can induce vaporization in solid materials. To pursue knowledge of the chemical species in the shock-induced vapors, one needs to design experiments that will drive the system to such thermodynamic states that sufficient vapor can be generated for investigation. It is common to use porous media to reach high entropy, vaporized states in impact experiments. We extended calculations by Ahrens [J. Appl. Phys. 43, 2443 (1972)] and Ahrens and O'Keefe [The Moon 4, 214 (1972)] to higher distentions (up to five) and improved their method with a different impedance match calculation scheme and augmented their model with recent thermodynamic and Hugoniot data of metals, minerals, and polymers. Although we reconfirmed the competing effects reported in the previous studies: (1) increase of entropy production and (2) decrease of impedance match, when impacting materials with increasing distentions, our calculations did not exhibit optimal entropy-generating distention. For different materials, very different impact velocities are needed to initiate vaporization. For aluminum at distention (m)<2.2, a minimum impact velocity of 2.7 km/s is required using tungsten projectile. For ionic solids such as NaCl at distention <2.2, 2.5 km/s is needed. For carbonate and sulfate minerals, the minimum impact velocities are much lower, ranging from less than 1 to 1.5 km/s
Coloumb interaction and instability of CE-structure in half doped manganites
In their Letter (Phys. Rev. Lett. 83, 5118 (1999)), den Brink, Khaliullin,
and Khomskii proposed theoretically that the one-dimensional ferromagnetic
zigzag chains in CE phase in half-doped manganites play an essential role in
forming the orbital ordering, and, more surprisingly, the on-site Coulomb
interaction U between electrons with different orbitals leads to experimentally
observed charge ordering. In this Comment, I point out that the strong U will
destroy the stability of CE-type phase, which is stable in a very narrow regime
in the parameter space for electronic model.To solve this issue finally, we
have to take into account other interactions, such as the long-range Coulomb
interaction, Jahn-Teller distortion, and physics of topological berry phase.
For example, the effect of finite large J leads to an attractive
particle-hole interaction, which favors to stabilize the charge ordering.Comment: 1 page, 1 figure, To appear in Phys. Rev. Let
Spin Response and Neutrino Emissivity of Dense Neutron Matter
We study the spin response of cold dense neutron matter in the limit of zero
momentum transfer, and show that the frequency dependence of the
long-wavelength spin response is well constrained by sum-rules and the
asymptotic behavior of the two-particle response at high frequency. The
sum-rules are calculated using Auxiliary Field Diffusion Monte Carlo technique
and the high frequency two-particle response is calculated for several
nucleon-nucleon potentials. At nuclear saturation density, the sum-rules
suggest that the strength of the spin response peaks at 40--60
MeV, decays rapidly for 100 MeV, and has a sizable strength below
40 MeV. This strength at relatively low energy may lead to enhanced neutrino
production rates in dense neutron-rich matter at temperatures of relevance to
core-collapse supernova.Comment: 11 pages, 4 figures. Minor change. Published versio
Even faster sorting of (not only) integers
In this paper we introduce RADULS2, the fastest parallel sorter based on
radix algorithm. It is optimized to process huge amounts of data making use of
modern multicore CPUs. The main novelties include: extremely optimized
algorithm for handling tiny arrays (up to about a hundred of records) that
could appear even billions times as subproblems to handle and improved
processing of larger subarrays with better use of non-temporal memory stores
Anti-correlation and subsector structure in financial systems
With the random matrix theory, we study the spatial structure of the Chinese
stock market, American stock market and global market indices. After taking
into account the signs of the components in the eigenvectors of the
cross-correlation matrix, we detect the subsector structure of the financial
systems. The positive and negative subsectors are anti-correlated each other in
the corresponding eigenmode. The subsector structure is strong in the Chinese
stock market, while somewhat weaker in the American stock market and global
market indices. Characteristics of the subsector structures in different
markets are revealed.Comment: 6 pages, 2 figures, 4 table
- …