46 research outputs found

    In Ovo Monitoring of Smooth Muscle Fiber Development in the Chick Embryo: Diffusion Tensor Imaging with Histologic Correlation

    Get PDF
    , and to determine the correlation between histologically-derived muscle fiber fraction, day of incubation and diffusion tensor imaging fractional anisotropy values and length of tracked fibers.From a set of 82 normally developing fertile chicken eggs, 5 eggs were randomly chosen each day from incubation days 5 to 18 and cooled using a dual-cooling technique prior to and during magnetic resonance imaging at 3.0 Tesla. Smooth muscle fibers of the gizzard were tracked using region of interests placed over the gizzard. Following imaging, the egg was cracked and the embryo was fixated and sectioned, and a micrograph most closely corresponding to the acquired magnetic resonance image was made. Smooth muscle fiber fraction was determined using an automated computer algorithm. development of smooth muscle tissue

    Conditionally Immortalized Mouse Embryonic Fibroblasts Retain Proliferative Activity without Compromising Multipotent Differentiation Potential

    Get PDF
    Mesenchymal stem cells (MSCs) are multipotent cells which reside in many tissues and can give rise to multiple lineages including bone, cartilage and adipose. Although MSCs have attracted significant attention for basic and translational research, primary MSCs have limited life span in culture which hampers MSCs' broader applications. Here, we investigate if mouse mesenchymal progenitors can be conditionally immortalized with SV40 large T antigen and maintain long-term cell proliferation without compromising their multipotency. Using the system which expresses SV40 large T antigen flanked with Cre/loxP sites, we demonstrate that mouse embryonic fibroblasts (MEFs) can be efficiently immortalized by SV40 large T antigen. The conditionally immortalized MEFs (iMEFs) exhibit an enhanced proliferative activity and maintain long-term cell proliferation, which can be reversed by Cre recombinase. The iMEFs express most MSC markers and retain multipotency as they can differentiate into osteogenic, chondrogenic and adipogenic lineages under appropriate differentiation conditions in vitro and in vivo. The removal of SV40 large T reduces the differentiation potential of iMEFs possibly due to the decreased progenitor expansion. Furthermore, the iMEFs are apparently not tumorigenic when they are subcutaneously injected into athymic nude mice. Thus, the conditionally immortalized iMEFs not only maintain long-term cell proliferation but also retain the ability to differentiate into multiple lineages. Our results suggest that the reversible immortalization strategy using SV40 large T antigen may be an efficient and safe approach to establishing long-term cell culture of primary mesenchymal progenitors for basic and translational research, as well as for potential clinical applications

    A compendium of genetic regulatory effects across pig tissues

    Get PDF
    The Farm Animal Genotype-Tissue Expression (FarmGTEx) project has been established to develop a public resource of genetic regulatory variants in livestock, which is essential for linking genetic polymorphisms to variation in phenotypes, helping fundamental biological discovery and exploitation in animal breeding and human biomedicine. Here we show results from the pilot phase of PigGTEx by processing 5,457 RNA-sequencing and 1,602 whole-genome sequencing samples passing quality control from pigs. We build a pig genotype imputation panel and associate millions of genetic variants with five types of transcriptomic phenotypes in 34 tissues. We evaluate tissue specificity of regulatory effects and elucidate molecular mechanisms of their action using multi-omics data. Leveraging this resource, we decipher regulatory mechanisms underlying 207 pig complex phenotypes and demonstrate the similarity of pigs to humans in gene expression and the genetic regulation behind complex phenotypes, supporting the importance of pigs as a human biomedical model.</p

    Electron Beam Irradiation Induced Multiwalled Carbon Nanotubes Fusion inside SEM

    No full text
    This paper reported a method of multiwalled carbon nanotubes (MWCNTs) fusion inside a scanning electron microscope (SEM). A CNT was picked up by nanorobotics manipulator system which was constructed in SEM with 21 DOFs and 1 nm resolution. The CNT was picked up and placed on two manipulators. The tensile force was 140 nN when the CNT was pulled into two parts. Then, two parts of the CNT were connected to each other by two manipulators. The adhered force between two parts was measured to be about 20 nN. When the two parts of CNT were connected again, the contact area was fused by focused electron beam irradiation for 3 minutes. The tensile force of the junction was measured to be about 100 nN. However, after fusion, the tensile force was five times larger than the tensile force connected only by van der Waals force. This force was 70 percent of the tensile force before pulling out of CNTs. The results revealed that the electron beam irradiation was a promising method for CNT fusion. We hope this technology will be applied to nanoelectronics in the near future

    A Metabolic Trade-Off Modulates Policing of Social Cheaters in Populations of Pseudomonas aeruginosa

    No full text
    Pseudomonas aeruginosa uses quorum sensing (QS) to regulate the production of public goods such as the secreted protease elastase. P. aeruginosa requires the LasI–LasR QS circuit to induce elastase and enable growth on casein as the sole carbon and energy source. The LasI–LasR system also induces a second QS circuit, the RhlI–RhlR system. During growth on casein, LasR-mutant social cheaters emerge, and this can lead to a population collapse. In a minimal medium containing ammonium sulfate as a nitrogen source, populations do not collapse, and cheaters and cooperators reach a stable equilibrium; however, without ammonium sulfate, cheaters overtake the cooperators and populations collapse. We show that ammonium sulfate enhances the activity of the RhlI–RhlR system in casein medium and this leads to increased production of cyanide, which serves to control levels of cheaters. This enhancement of cyanide production occurs because of a trade-off in the metabolism of glycine: exogenous ammonium ion inhibits the transformation of glycine to 5,10-methylenetetrahydrofolate through a reduction in the expression of the glycine cleavage genes gcvP1 and gcvP2, thereby increasing the availability of glycine as a substrate for RhlR-regulated hydrogen cyanide synthesis. Thus, environmental ammonia enhances cyanide production and stabilizes QS in populations of P. aeruginosa

    Differential Diagnosis of Solitary Fibrous Tumor/Hemangiopericytoma and Angiomatous Meningioma Using Three-Dimensional Magnetic Resonance Imaging Texture Feature Model

    No full text
    Background. Intracranial solitary fibrous tumor(SFT)/hemangiopericytoma (HPC) is an aggressive malignant tumor originating from the intracranial vasculature. Angiomatous meningioma (AM) is a benign tumor with a good prognosis. The imaging manifestations of the two are very similar. Thus, novel noninvasive diagnostic method is urgently needed in clinical practice. Texture analysis and model building through machine learning may have good prospects. Aim. To evaluate whether a 3D-MRI texture feature model could be used to differentiate malignant intracranial SFT/HPC from AM. Method. A total of 97 patients with SFT/HPC and 95 with AM were included in this study. Patients from each group were randomly divided into the train (70%) and test (30%) sets. ROIs were drawn along the edge of the tumor on each section of T1WI, T2WI, and contrasted T1WI using ITK-SNAP software. The segmented image was imported into the AK software for texture feature extraction, and the 3D ROI signal intensity histograms of T1WI, T2WI, and contrasted T1WI were automatically obtained along with all the parameters. Modeling was performed using the language R. Confusion matrix was used to analyze the accuracy of the model. ROC curve was constructed to assess the grading ability of the logistic regression model. Results. After Lasso dimension reduction, 5, 9, and 7 texture features were extracted from T1WI, T2WI, and contrasted T1WI, respectively; additional 8 texture features were extracted from the combined sequence for modeling. The ROC analyses on four models resulted in an area under the curve (AUC) of 0.885 (sensitivity 76.1%, specificity 87.9%) for T1WI model, 0.918 (73.1%, 95.5%) for T2WI model, 0.815 (55.2%, 93.9%) for contrasted T1WI model, and 0.959 (92.5%, 84.8%) for the combined sequence model and were enough to correctly distinguish the two groups in 71.2%, 81.4%, 69.5%, and 83.1% of cases in test set, respectively. Conclusions. The radiological model based on texture features could be used to differentiate SFT/HPC from AM

    Altered resting-state connectivity in college students with nonclinical depressive symptoms.

    No full text
    BACKGROUND: The underlying brain basis of nonclinical depressive symptoms (nCDSs) is largely unknown. Recently, the seed-based functional connectivity (FC) approach for analyzing resting-state fMRI (rs-fMRI) data has been increasingly used to explore the neural basis of depressive disorders. Other than common seed-based FC method using an a priori seed region, we conducted FC analysis based on regions with altered spontaneous activity revealed by the fractional amplitude of low-frequency fluctuations (fALFF) approach. The aim of the present study was to provide novel insight in the underlying mechanism of nCDSs in college students. METHODOLOGY/PRINCIPAL FINDINGS: A total number of 1105 college students were recruited to participant in a survey for assessing depressive symptoms. Subsequently, 17 individuals with nCDSs and 20 healthy controls (HCs) were enrolled to perform MR studies. Alternations of fALFF were identified in the right superior parietal lobule (SPL) and left lingual gyrus, both of which were used as ROIs for further FC analysis. With right SPL, compare with HCs, subjects with nCDSs showed reduced FCs in the bilateral dorsal lateral prefrontal cortex (DLPFC), left inferior frontal gurus (IFG), left premotor cortex (PMC), DMN network [i.e., bilateral precuneus, posterior cingulate cortex (PCC), right supramarginal gyrus (SMG), right parahippocampal gyrus (PHG), bilateral inferior temporal gurus (ITG)] and left cerebellum posterior lobe (CPL). In addition, increased FCs were observed between the left lingual gyrus and right fusiform gyrus as well as in the left precuneus. CONCLUSION/SIGNIFICANCE: Our results indicate the abnormalities of spontaneous activity in the right SPL and left lingual gyrus and their corresponding dysfunction of the brain circuits might be related to the pathophysiology of nCDSs

    Microstructural evolution and hot-compressive behavior of Waspaloy forged bolts: experimental and finite element simulation

    No full text
    This study aims to present the optimum technological parameters of the hot forging process of aerospace bolts. Deformation-related parameters were determined according to the relevant conditions for commercial production of bolts. Deformation behavior and evolution of the microstructure of Waspaloy were systematically studied at temperature in the range of 1000–1120 °C and strain rate in the range of 0.01–10 s−1. The obtained results revealed the sensitivity of the flow stresses to the deformation parameters and stresses increased when deformed at lower temperatures or higher strain rates. At the high strain rates of 5–10 s−1, the flow curves exhibited a pronounced flow softening. The curves demonstrated a dynamic equilibrium at the low strain rates of 0.01–0.1 s−1. A constituent model of Waspaloy was established to describe the flow characteristic of Waspaloy. The microstructures showed that the grain refinement of DRX at low temperature (1000–1040 °C) was the main mechanism for microstructural evolution, while the grain growth kinetic was the dominant mechanism at high temperature (1080–1120 °C). The DRX kinetic model of this superalloy was established. Also, the constitutive and dynamic recrystallization models were used in the Deform-3D software for validation. The obtained results revealed that the simulation results matched well with the experimental results of grain sizes at different regions of the bolt specimens. The study can provide guidance to optimize technological parameters and predict the microstructure for commercial bolt forging
    corecore