21 research outputs found

    ImbSAM: A Closer Look at Sharpness-Aware Minimization in Class-Imbalanced Recognition

    Full text link
    Class imbalance is a common challenge in real-world recognition tasks, where the majority of classes have few samples, also known as tail classes. We address this challenge with the perspective of generalization and empirically find that the promising Sharpness-Aware Minimization (SAM) fails to address generalization issues under the class-imbalanced setting. Through investigating this specific type of task, we identify that its generalization bottleneck primarily lies in the severe overfitting for tail classes with limited training data. To overcome this bottleneck, we leverage class priors to restrict the generalization scope of the class-agnostic SAM and propose a class-aware smoothness optimization algorithm named Imbalanced-SAM (ImbSAM). With the guidance of class priors, our ImbSAM specifically improves generalization targeting tail classes. We also verify the efficacy of ImbSAM on two prototypical applications of class-imbalanced recognition: long-tailed classification and semi-supervised anomaly detection, where our ImbSAM demonstrates remarkable performance improvements for tail classes and anomaly. Our code implementation is available at https://github.com/cool-xuan/Imbalanced_SAM.Comment: Accepted by International Conference on Computer Vision (ICCV) 202

    BatchNorm-based Weakly Supervised Video Anomaly Detection

    Full text link
    In weakly supervised video anomaly detection (WVAD), where only video-level labels indicating the presence or absence of abnormal events are available, the primary challenge arises from the inherent ambiguity in temporal annotations of abnormal occurrences. Inspired by the statistical insight that temporal features of abnormal events often exhibit outlier characteristics, we propose a novel method, BN-WVAD, which incorporates BatchNorm into WVAD. In the proposed BN-WVAD, we leverage the Divergence of Feature from Mean vector (DFM) of BatchNorm as a reliable abnormality criterion to discern potential abnormal snippets in abnormal videos. The proposed DFM criterion is also discriminative for anomaly recognition and more resilient to label noise, serving as the additional anomaly score to amend the prediction of the anomaly classifier that is susceptible to noisy labels. Moreover, a batch-level selection strategy is devised to filter more abnormal snippets in videos where more abnormal events occur. The proposed BN-WVAD model demonstrates state-of-the-art performance on UCF-Crime with an AUC of 87.24%, and XD-Violence, where AP reaches up to 84.93%. Our code implementation is accessible at https://github.com/cool-xuan/BN-WVAD

    DePT: Decoupled Prompt Tuning

    Full text link
    This work breaks through the Base-New Tradeoff (BNT)dilemma in prompt tuning, i.e., the better the tuned model generalizes to the base (or target) task, the worse it generalizes to new tasks, and vice versa. Specifically, through an in-depth analysis of the learned features of the base and new tasks, we observe that the BNT stems from a channel bias issue, i.e., the vast majority of feature channels are occupied by base-specific knowledge, resulting in the collapse of taskshared knowledge important to new tasks. To address this, we propose the Decoupled Prompt Tuning (DePT) framework, which decouples base-specific knowledge from feature channels into an isolated feature space during prompt tuning, so as to maximally preserve task-shared knowledge in the original feature space for achieving better zero-shot generalization on new tasks. Importantly, our DePT is orthogonal to existing prompt tuning methods, hence it can improve all of them. Extensive experiments on 11 datasets show the strong flexibility and effectiveness of DePT. Our code and pretrained models are available at https://github.com/Koorye/DePT.Comment: 13 page

    MotionZero:Exploiting Motion Priors for Zero-shot Text-to-Video Generation

    Full text link
    Zero-shot Text-to-Video synthesis generates videos based on prompts without any videos. Without motion information from videos, motion priors implied in prompts are vital guidance. For example, the prompt "airplane landing on the runway" indicates motion priors that the "airplane" moves downwards while the "runway" stays static. Whereas the motion priors are not fully exploited in previous approaches, thus leading to two nontrivial issues: 1) the motion variation pattern remains unaltered and prompt-agnostic for disregarding motion priors; 2) the motion control of different objects is inaccurate and entangled without considering the independent motion priors of different objects. To tackle the two issues, we propose a prompt-adaptive and disentangled motion control strategy coined as MotionZero, which derives motion priors from prompts of different objects by Large-Language-Models and accordingly applies motion control of different objects to corresponding regions in disentanglement. Furthermore, to facilitate videos with varying degrees of motion amplitude, we propose a Motion-Aware Attention scheme which adjusts attention among frames by motion amplitude. Extensive experiments demonstrate that our strategy could correctly control motion of different objects and support versatile applications including zero-shot video edit

    DETA: Denoised Task Adaptation for Few-Shot Learning

    Full text link
    Test-time task adaptation in few-shot learning aims to adapt a pre-trained task-agnostic model for capturing taskspecific knowledge of the test task, rely only on few-labeled support samples. Previous approaches generally focus on developing advanced algorithms to achieve the goal, while neglecting the inherent problems of the given support samples. In fact, with only a handful of samples available, the adverse effect of either the image noise (a.k.a. X-noise) or the label noise (a.k.a. Y-noise) from support samples can be severely amplified. To address this challenge, in this work we propose DEnoised Task Adaptation (DETA), a first, unified image- and label-denoising framework orthogonal to existing task adaptation approaches. Without extra supervision, DETA filters out task-irrelevant, noisy representations by taking advantage of both global visual information and local region details of support samples. On the challenging Meta-Dataset, DETA consistently improves the performance of a broad spectrum of baseline methods applied on various pre-trained models. Notably, by tackling the overlooked image noise in Meta-Dataset, DETA establishes new state-of-the-art results. Code is released at https://github.com/nobody-1617/DETA.Comment: 10 pages, 5 figure

    CUCL: Codebook for Unsupervised Continual Learning

    Full text link
    The focus of this study is on Unsupervised Continual Learning (UCL), as it presents an alternative to Supervised Continual Learning which needs high-quality manual labeled data. The experiments under the UCL paradigm indicate a phenomenon where the results on the first few tasks are suboptimal. This phenomenon can render the model inappropriate for practical applications. To address this issue, after analyzing the phenomenon and identifying the lack of diversity as a vital factor, we propose a method named Codebook for Unsupervised Continual Learning (CUCL) which promotes the model to learn discriminative features to complete the class boundary. Specifically, we first introduce a Product Quantization to inject diversity into the representation and apply a cross quantized contrastive loss between the original representation and the quantized one to capture discriminative information. Then, based on the quantizer, we propose an effective Codebook Rehearsal to address catastrophic forgetting. This study involves conducting extensive experiments on CIFAR100, TinyImageNet, and MiniImageNet benchmark datasets. Our method significantly boosts the performances of supervised and unsupervised methods. For instance, on TinyImageNet, our method led to a relative improvement of 12.76% and 7% when compared with Simsiam and BYOL, respectively.Comment: MM '23: Proceedings of the 31st ACM International Conference on Multimedi

    From Global to Local: Multi-scale Out-of-distribution Detection

    Full text link
    Out-of-distribution (OOD) detection aims to detect "unknown" data whose labels have not been seen during the in-distribution (ID) training process. Recent progress in representation learning gives rise to distance-based OOD detection that recognizes inputs as ID/OOD according to their relative distances to the training data of ID classes. Previous approaches calculate pairwise distances relying only on global image representations, which can be sub-optimal as the inevitable background clutter and intra-class variation may drive image-level representations from the same ID class far apart in a given representation space. In this work, we overcome this challenge by proposing Multi-scale OOD DEtection (MODE), a first framework leveraging both global visual information and local region details of images to maximally benefit OOD detection. Specifically, we first find that existing models pretrained by off-the-shelf cross-entropy or contrastive losses are incompetent to capture valuable local representations for MODE, due to the scale-discrepancy between the ID training and OOD detection processes. To mitigate this issue and encourage locally discriminative representations in ID training, we propose Attention-based Local PropAgation (ALPA), a trainable objective that exploits a cross-attention mechanism to align and highlight the local regions of the target objects for pairwise examples. During test-time OOD detection, a Cross-Scale Decision (CSD) function is further devised on the most discriminative multi-scale representations to distinguish ID/OOD data more faithfully. We demonstrate the effectiveness and flexibility of MODE on several benchmarks -- on average, MODE outperforms the previous state-of-the-art by up to 19.24% in FPR, 2.77% in AUROC. Code is available at https://github.com/JimZAI/MODE-OOD.Comment: 13 page

    An Efficient Membership Inference Attack for the Diffusion Model by Proximal Initialization

    Full text link
    Recently, diffusion models have achieved remarkable success in generating tasks, including image and audio generation. However, like other generative models, diffusion models are prone to privacy issues. In this paper, we propose an efficient query-based membership inference attack (MIA), namely Proximal Initialization Attack (PIA), which utilizes groundtruth trajectory obtained by ϵ\epsilon initialized in t=0t=0 and predicted point to infer memberships. Experimental results indicate that the proposed method can achieve competitive performance with only two queries on both discrete-time and continuous-time diffusion models. Moreover, previous works on the privacy of diffusion models have focused on vision tasks without considering audio tasks. Therefore, we also explore the robustness of diffusion models to MIA in the text-to-speech (TTS) task, which is an audio generation task. To the best of our knowledge, this work is the first to study the robustness of diffusion models to MIA in the TTS task. Experimental results indicate that models with mel-spectrogram (image-like) output are vulnerable to MIA, while models with audio output are relatively robust to MIA. {Code is available at \url{https://github.com/kong13661/PIA}}
    corecore