292 research outputs found
Gold on graphene as a substrate for surface enhanced Raman scattering study
In this paper, we report our study on gold (Au) films with different
thicknesses deposited on single layer graphene (SLG) as surface enhanced Raman
scattering (SERS) substrates for the characterization of rhodamine (R6G)
molecules. We find that an Au film with a thickness of ~7 nm deposited on SLG
is an ideal substrate for SERS, giving the strongest Raman signals for the
molecules and the weakest photoluminescence (PL) background. While Au films
effectively enhance both the Raman and PL signals of molecules, SLG effectively
quenches the PL signals from the Au film and molecules. The former is due to
the electromagnetic mechanism involved while the latter is due to the strong
resonance energy transfer from Au to SLG. Hence, the combination of Au films
and SLG can be widely used in the characterization of low concentration
molecules with relatively weak Raman signals.Comment: 11 pages, 4 figure
Clinical value of TAT, PIC and t-PAIC as predictive markers for severe sepsis in pediatric patients
ObjectiveSepsis in pediatric patients can progress to severe sepsis, and identifying biomarkers of this progression may permit timely intervention to prevent it. This study aimed to investigate the ability of thrombin-antithrombin complex (TAT), α2-plasmininhibitor-plasmin complex (PIC) and tissue-type plasminogen activator-inhibitor complex (t-PAIC) to predict severe sepsis in pediatrics early.Methods148 eligible pediatric sepsis patients were enrolled in this study, and were then divided into those who progressed to severe sepsis (n = 50) or not (n = 98). Serum levels of TAT, PIC, and t-PAIC were analysed, and simplified pediatric critical illness score (PCIS) and DIC score were calculated on the day of pediatric sepsis diagnosis.ResultsCompared with sepsis patients, severe sepsis patients had higher levels of TAT, PIC and t-PAIC. Correlation analysis revealed that TAT, PIC and t-PAIC were significantly correlated with simplified PCIS and DIC score. ROC curve analysis suggested that TAT, PIC and t-PAIC could serve as biomarkers for predicting severe sepsis with the AUC up to 0.862, 0.759 and 0.851, respectively. Stratified analysis demonstrated that the patients with increased levels of TAT, PIC and t-PAIC had worse illness severity and clinical outcome. Univariate logistic regression analysis revealed that TAT, PIC and t-PAIC were all risk factors for severe sepsis, yet only TAT and t-PAIC were independent risk factors in multivariate model.ConclusionsTAT, PIC and t-PAIC could serve as biomarkers for predicting severe sepsis, and correlated with illness severity in pediatrics, what's more, serum levels of TAT and t-PAIC may be independent risk factors for pediatric severe sepsis
Proper doses of brassinolide enhance somatic embryogenesis in different competent Korean pine cell lines during embryogenic callus differentiation
Somatic embryogenesis of Korean pine (Pinus koraiensis Sieb. Et Zucc.), an ecologically and econimically very important conifer species, was hindered by the gradually weakens and fast runaway of the embryogenicity and embryo competence of the embryogenic callus. Brassinolide (BL) has shown the enhancing capability of somatic embryo regeneration. For checking the function of BL in this issue, we applied different concentrations of BL to Korean pine callus materials exhibiting different embryogenic capacities and subsequently monitored the physiological alterations and hormone dynamics of the embryogenic callus. Our study revealed that calli with different embryogenic strengths responded differently to different concentrations of BL, but the effect after the addition of BL was very uniform. The addition of BL during the proliferation phase of embryogenic callus may help to stimulate the biological activity of callus during the proliferation process and improve the level of cell metabolism, which is accompanied by a reduction in storage substances. BL could reduce the level of endogenous auxin IAA in embryogenic callus and increase the level of abscisic acid to regulate cell division and differentiation. In addition, the MDA content in the callus was significantly decreased and the activity of antioxidant enzymes was significantly increased after the addition of BL. During the proliferation of embryogenic callus, BL was added to participate in the metabolism of phenylpropane in the cells and to increase the activity of phenylalanine ammonia-lyase and the content of lignin in the cells. We deduced that the proper doses of BL for Korean pine embryogenic callus culture were as follow: calli with low, high and decreasing embryogenicity were subcultured after the addition of 0.75 mg/L, 0.35 mg/L, 2.00 mg/L BL, respectively, during proliferation culture stage
Feasibility of using Y<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub> nanoparticles to fabricate high strength oxide dispersion strengthened Fe-Cr-Al steels
Addition of Al can improve the corrosion resistance of oxide dispersion
strengthened (ODS) steels. However, Al reacts with Y2O3 to form large Y-Al-O
particles in the steels and deteriorates their mechanical properties. Herein, we
successfully prepared Y2Ti2O7 nanoparticles (NPs) by the combination of hydrogen
plasma-metal reaction (HPMR) and annealing. Y2Ti2O7 NPs with contents of 0.2 or 0.6 wt.% were then added into the Fe-14Cr-3Al-2W-0.35Ti (wt.%) steel to substitute the conventional Y2O3 NPs by mechanical alloying (MA). The Y2Ti2O7 NPs transformed into amorphous-like structure after 96 h MA. They crystallized with a fine size of 7.4±3.7 nm and shared a semi-coherent interface with the matrix after hot isostatic pressing (HIP) of the ODS steel with 0.6 wt.% Y2Ti2O7. With the increasing Y2Ti2O7 content from 0.2 to 0.6 wt.%, the tensile strength of the ODS steel increased from 1238 to 1296 MPa, which was much higher than that (949 MPa) of the ODS steel added with Y2O3. The remarkably improved mechanical properties of the Al-containing ODS steels were attributed to the increasing number density of Y2Ti2O7 nanoprecipitates. Our work demonstrates a novel route to fabricate high performance
ODS steels with both high mechanical strength and good corrosion resistance
Magnesium Alleviates Adverse Effects of Lead on Growth, Photosynthesis, and Ultrastructural Alterations of Torreya grandis Seedlings
Magnesium (Mg2+) has been shown to reduce the physiological and biochemical stress in plants caused by heavy metals. To date our understanding of how Mg2+ ameliorates the adverse effects of heavy metals in plants is scarce. The potential effect of Mg2+ on lead (Pb2+) toxicity in plants has not yet been studied. This study was designed to clarify the mechanism of Mg2+-induced alleviation of lead (Pb2+) toxicity. Torreya grandis (T. grandis) seedlings were grown in substrate contaminated with 0, 700 and 1400 mg Pb2+ per kg-1 and with or without the addition of 1040 mg kg-1 Mg2+. Growth parameters, concentrations of Pb2+ and Mg2+ in the plants’ shoots and roots, photosynthetic pigment, gas exchange parameters, the maximum quantum efficiency (Fv/Fm), root oxidative activity, ultrastructure of chloroplasts and root growth were determined to analyze the effect of different Pb2+ concentrations in the seedlings as well as the potential ameliorating effect of Mg2+ on the Pb2+ induced toxicity. The growth of T. grandis seedlings cultivated in soils treated with 1400 mg kg-1 Pb2+ was significantly reduced compared with that of plants cultivated in soils treated with 0 or 700 mg kg-1 Pb2+. The addition of 1040 mg kg-1 Mg2+ improved the growth of the Pb2+-stressed seedlings, which was accompanied by increased chlorophyll content, the net photosynthetic rate and Fv/Fm, and enhanced chloroplasts development. In addition, the application of Mg2+ induced plants to accumulate five times higher concentrations of Pb2+ in the roots and to absorb and translocate four times higher concentrations of Mg2+ to the shoots than those without Mg2+ application. Furthermore, Mg2+ addition increased root growth and oxidative activity, and protected the root ultrastructure. To the best of our knowledge, our study is the first report on the mechanism of Mg2+-induced alleviation of Pb2+ toxicity. The gener¬ated results may have important implications for understanding the physiological interactions between heavy metals and plants, and for successful management of T. grandis plantations grown on soils contaminated with Pb2+
- …