37,048 research outputs found

    Undulatory swimming in fluids with polymer networks

    Full text link
    The motility behavior of the nematode Caenorhabditis elegans in polymeric solutions of varying concentrations is systematically investigated in experiments using tracking and velocimetry methods. As the polymer concentration is increased, the solution undergoes a transition from the semi-dilute to the concentrated regime, where these rod-like polymers entangle, align, and form networks. Remarkably, we find an enhancement in the nematode's swimming speed of approximately 65% in concentrated solutions compared to semi-dilute solutions. Using velocimetry methods, we show that the undulatory swimming motion of the nematode induces an anisotropic mechanical response in the fluid. This anisotropy, which arises from the fluid micro-structure, is responsible for the observed increase in swimming speed.Comment: Published 1 November 2013 in Europhysics Letter

    Symmetry of the Gap in Bi2212 from Photoemission Spectroscopy

    Full text link
    In a recent Letter, Shen et al have detected a large anisotropy of the superconducting gap in Bi2212, consistent with d-wave symmetry, from photoemission spectroscopy. Moreover, they claim that the change in their spectra as a function of aging is also consistent with such an intrepretation. In this Comment, I show that the latter statement is not entirely correct, in that the data as a function of aging are inconsistent with a d-wave gap but are consistent with an anisotropic s-wave gap.Comment: 3 pages (Plain TeX with macros), plus 1 postscript figur

    Calibration of shielded microwave probes using bulk dielectrics

    Full text link
    A stripline-type near-field microwave probe is microfabricated for microwave impedance microscopy. Unlike the poorly shielded coplanar probe that senses the sample tens of microns away, the stripline structure removes the stray fields from the cantilever body and localizes the interaction only around the focused-ion beam deposited Pt tip. The approaching curve of an oscillating tip toward bulk dielectrics can be quantitatively simulated and fitted to the finite-element analysis result. The peak signal of the approaching curve is a measure of the sample dielectric constant and can be used to study unknown bulk materials.Comment: 10 pages, 3 figure

    Underlying Fermi surface of Sr14−x_{14-x}Cax_xCu24_{24}O41_{41} in two-dimensional momentum space observed by angle-resolved photoemission spectroscopy

    Full text link
    We have performed an angle-resolved photoemission study of the two-leg ladder system Sr14−x_{14-x}Cax_xCu24_{24}O41_{41} with xx= 0 and 11. "Underlying Fermi surfaces" determined from low energy spectral weight mapping indicates the quasi-one dimensional nature of the electronic structure. Energy gap caused by the charge density wave has been observed for xx=0 and the gap tends to close with Ca substitution. The absence of a quasi-particle peak even in xx=11 is in contrast to the two-dimensional high-TcT_c cuprates, implying strong carrier localization related to the hole crystalization.Comment: 5 pages, 3 figure

    Evidence of Electron Fractionalization from Photoemission Spectra in the High Temperature Superconductors

    Full text link
    In the normal state of the high temperature superconductors Bi_2Sr_2CaCu_2O_{8+delta} and La_{2-x}Sr_{x}CuO_4, and in the related ``stripe ordered'' material La_1.25Nd_0.6Sr_0.15CuO_4, there is sharp structure in the measured single hole spectral function A(k,w) considered as a function of k at fixed small binding energy w. At the same time, as a function of w at fixed k on much of the putative Fermi surface, any structure in A(k,w), other than the Fermi cutoff, is very broad. This is characteristic of the situation in which there are no stable excitations with the quantum numbers of the electron, as is the case in the one dimensional electron gas.Comment: Published versio

    Thermodynamics with density and temperature dependent particle masses and properties of bulk strange quark matter and strangelets

    Full text link
    Thermodynamic formulas for investigating systems with density and/or temperature dependent particle masses are generally derived from the fundamental derivation equality of thermodynamics. Various problems in the previous treatments are discussed and modified. Properties of strange quark matter in bulk and strangelets at both zero and finite temperature are then calculated based on the new thermodynamic formulas with a new quark mass scaling, which indicates that low mass strangelets near beta equilibrium are multi-quark states with an anti-strange quark, such as the pentaquark (u^2d^2\bar{s}) for baryon nmber 1 and the octaquark (u^4d^3\bar{s}) for dibaryon etc.Comment: 14 pages, 12 figures, Revtex4 styl

    Low-Energy Electronic Structure of the High-Tc Cuprates La2-xSrxCuO4 Studied by Angle-resolved Photoemission Spectroscopy

    Full text link
    We have performed a systematic angle-resolved photoemission spectroscopy (ARPES) study of the high-Tc cuprates La2-xSrxCuO4, ranging from the underdoped insulator to the superconductor to the overdoped metal. We have revealed a systematic doping evolution of the band dispersions and (underlying) Fermi surfaces, pseudogap and quasi-particle features under the influence of strong electron-electron interaction and electron-phonon interaction. The unusual transport and thermodynamic properties are explained by taking into account the pseudogap opening and the Fermi arc formation, due to which the carrier number decreases as the doped hole concentration decreases.Comment: 27 pages, 17 figures, accepted in Journal of Physics Condensed Matte

    Direct observation of the mass renormalization in SrVO3_3 by angle resolved photoemission spectroscopy

    Full text link
    We have performed an angle-resolved photoemission study of the three-dimensional perovskite-type SrVO3_3. Observed spectral weight distribution of the coherent part in the momentum space shows cylindrical Fermi surfaces consisting of the V 3dd t2gt_{2g} orbitals as predicted by local-density-approximation (LDA) band-structure calculation. The observed energy dispersion shows a moderately enhanced effective mass compared to the LDA results, corresponding to the effective mass enhancement seen in the thermodynamic properties. Contributions from the bulk and surface electronic structures to the observed spectra are discussed based on model calculations.Comment: 5 pages, 5 figure
    • …
    corecore