598 research outputs found

    Responses of Helicoverpa armigera to tomato plants previously infected by ToMV or damaged by H-Armigera

    Get PDF
    We report the comparative inducing effects of a phytopathogen and a herbivorous arthropod on the performance of an herbivore. Tomato, Lycopersicon esculentum Mill., was used as the test plant, and tomato mosaic virus (ToMV) and corn earworm, Helicoverpa armigera Hubner, were used as the phytopathogen and herbivore, respectively. There were decreases in the efficiency of conversion of ingested food and efficiency of conversion of digested food when H. armigera was reared on tomato plants that had been previously inoculated with ToMV. However, virus inoculation did not affect feeding or oviposition preferences by H. armigera. In contrast, approximate digestibility, total consumption, relative growth rate, and relative consumption rate were lower for fourth-instar H. armigera that fed on plants previously damaged by the same herbivore. Feeding and oviposition were both deterred for H. armigera that fed on previously damaged plants. The duration of development of H. armigera was also prolonged under this treatment. Infection by ToMV and feeding damage by H. armigera increased the host plant's peroxidase and polyphenol oxidase activity, respectively, suggesting that the performance of H. armigera may be affected by the induced phytochemistry of the host plant. Overall, this study indicated that, in general, insect damage has a stronger effect than ToMV infection on plant chemistry and, subsequently, on the performance of H. armigera

    Analytic approximation and an improved method for computing the stress-energy of quantized scalar fields in Robertson-Walker spacetimes

    Get PDF
    An improved method is given for the computation of the stress-energy tensor of a quantized scalar field using adiabatic regularization. The method works for fields with arbitrary mass and curvature coupling in Robertson-Walker spacetimes and is particularly useful for spacetimes with compact spatial sections. For massless fields it yields an analytic approximation for the stress-energy tensor that is similar in nature to those obtained previously for massless fields in static spacetimes.Comment: RevTeX, 8 pages, no figure

    Spontaneous magnetization of aluminum nanowires deposited on the NaCl(100) surface

    Get PDF
    We investigate electronic structures of Al quantum wires, both unsupported and supported on the (100) NaCl surface, using the density-functional theory. We confirm that unsupported nanowires, constrained to be linear, show magnetization when elongated beyond the equilibrium length. Allowing ions to relax, the wires deform to zig-zag structures with lower magnetization but no dimerization occurs. When an Al wire is deposited on the NaCl surface, a zig-zag geometry emerges again. The magnetization changes moderately from that for the corresponding unsupported wire. We analyse the findings using electron band structures and simple model wires.Comment: submitted to PHys. Rev.

    Flat-Band Ferromagnetism in Organic Polymers Designed by a Computer Simulation

    Full text link
    By coupling a first-principles, spin-density functional calculation with an exact diagonalization study of the Hubbard model, we have searched over various functional groups for the best case for the flat-band ferromagnetism proposed by R. Arita et al. [Phys. Rev. Lett. {\bf 88}, 127202 (2002)] in organic polymers of five-membered rings. The original proposal (poly-aminotriazole) has turned out to be the best case among the materials examined, where the reason why this is so is identified here. We have also found that the ferromagnetism, originally proposed for the half-filled flat band, is stable even when the band filling is varied away from the half-filling. All these make the ferromagnetism proposed here more experimentally inviting.Comment: 11 pages, 13figure

    Indirect exchange in GaMnAs bilayers via spin-polarized inhomogeneous hole gas: Monte Carlo simulation

    Full text link
    The magnetic order resulting from an indirect exchange between magnetic moments provided by spin-polarized hole gas in the metallic phase of a GaMnAs double layer structure is studied via Monte Carlo simulation. The coupling mechanism involves a perturbative calculation in second order of the interaction between the magnetic moments and carriers (holes). We take into account a possible polarization of the hole gas due to the existence of an average magnetization in the magnetic layers, establishing, in this way, a self-consistency between the magnetic order and the electronic structure. That interaction leads to an internal ferromagnetic order inside each layer, and a parallel arrangement between their magnetizations, even in the case of thin layers. This fact is analyzed in terms of the inter- and intra-layer interactions.Comment: 17 pages and 14 figure

    Small-molecule pyrimidine inhibitors of the cdc2-like (Clk) and dual specificity tyrosine phosphorylation-regulated (Dyrk) kinases: Development of chemical probe ML315

    Get PDF
    Substituted pyrimidine inhibitors of the Clk and Dyrk kinases have been developed, exploring structure-activity relationships around four different chemotypes. The most potent compounds have low-nanomolar inhibitory activity against Clk1, Clk2, Clk4, Dyrk1A and Dyrk1B. Kinome scans with 442 kinases using agents representing three of the chemotypes show these inhibitors to be highly selective for the Clk and Dyrk families. Further off-target pharmacological evaluation with ML315, the most selective agent, supports this conclusion

    A Conformally Invariant Holographic Two-Point Function on the Berger Sphere

    Full text link
    We apply our previous work on Green's functions for the four-dimensional quaternionic Taub-NUT manifold to obtain a scalar two-point function on the homogeneously squashed three-sphere (otherwise known as the Berger sphere), which lies at its conformal infinity. Using basic notions from conformal geometry and the theory of boundary value problems, in particular the Dirichlet-to-Robin operator, we establish that our two-point correlation function is conformally invariant and corresponds to a boundary operator of conformal dimension one. It is plausible that the methods we use could have more general applications in an AdS/CFT context.Comment: 1+49 pages, no figures. v2: Several typos correcte

    Before and After: Comparison of Legacy and Harmonized TCGA Genomic Data Commons’ Data

    Get PDF
    We present a systematic analysis of the effects of synchronizing a large-scale, deeply characterized, multi-omic dataset to the current human reference genome, using updated software, pipelines, and annotations. For each of 5 molecular data platforms in The Cancer Genome Atlas (TCGA)—mRNA and miRNA expression, single nucleotide variants, DNA methylation and copy number alterations—comprehensive sample, gene, and probe-level studies were performed, towards quantifying the degree of similarity between the ‘legacy’ GRCh37 (hg19) TCGA data and its GRCh38 (hg38) version as ‘harmonized’ by the Genomic Data Commons. We offer gene lists to elucidate differences that remained after controlling for confounders, and strategies to mitigate their impact on biological interpretation. Our results demonstrate that the hg19 and hg38 TCGA datasets are very highly concordant, promote informed use of either legacy or harmonized omics data, and provide a rubric that encourages similar comparisons as new data emerge and reference data evolve. Gao et al. performed a systematic analysis of the effects of synchronizing the large-scale, widely used, multi-omic dataset of The Cancer Genome Atlas to the current human reference genome. For each of the five molecular data platforms assessed, they demonstrated a very high concordance between the ‘legacy’ GRCh37 (hg19) TCGA data and its GRCh38 (hg38) version as ‘harmonized’ by the Genomic Data Commons

    Pervasive interventions to increase pro-environmental awareness, consciousness, and learning at the workplace

    Get PDF
    Börner, D., Kalz, M., Ternier, S., & Specht, M. (2013). Pervasive interventions to increase pro-environmental awareness, consciousness, and learning at the workplace. In D. Hernåndez-Leo et al. (Eds.), Scaling up Learning for Sustained Impact. Proceedings of the 8th European Conference on Technology Enhanced Learning (EC-TEL 2013), LNCS 8095 (pp. 57-70). Berlin Heidelberg, Germany: Springer. [The final publication is available at link.springer.com/chapter/10.1007/978-3-642-40814-4_6]This paper reports about pervasive interventions at a university campus to increase the pro-environmental awareness, consciousness, and learning of employees. Based on an assessment of the research gaps in this problem area we present results and design implications from three intervention iterations. While in the first intervention the focus was on increasing awareness through information distribution with ambient learning displays on the campus, the second iteration provided personalised feedback to employees with the help of a sensor network and different client applications. The third iteration then implemented a game-based learning concept. Results reveal that these approaches are effective on different levels and that a combination of these elements can lead to increased pro-environmental consciousness, learning and hopefully a sustained behaviour change of employees.SURFnet Innovatieregeling Duurzaamheid & IC
    • 

    corecore