5,281 research outputs found
Axon diameters and myelin content modulate microscopic fractional anisotropy at short diffusion times in fixed rat spinal cord
Mapping tissue microstructure accurately and noninvasively is one of the
frontiers of biomedical imaging. Diffusion Magnetic Resonance Imaging (MRI) is
at the forefront of such efforts, as it is capable of reporting on microscopic
structures orders of magnitude smaller than the voxel size by probing
restricted diffusion. Double Diffusion Encoding (DDE) and Double Oscillating
Diffusion Encoding (DODE) in particular, are highly promising for their ability
to report on microscopic fractional anisotropy ({\mu}FA), a measure of the pore
anisotropy in its own eigenframe, irrespective of orientation distribution.
However, the underlying correlates of {\mu}FA have insofar not been studied.
Here, we extract {\mu}FA from DDE and DODE measurements at ultrahigh magnetic
field of 16.4T in the aim to probe fixed rat spinal cord microstructure. We
further endeavor to correlate {\mu}FA with Myelin Water Fraction (MWF) derived
from multiexponential T2 relaxometry, as well as with literature-based
spatially varying axonal diameters. In addition, a simple new method is
presented for extracting unbiased {\mu}FA from three measurements at different
b-values. Our findings reveal strong anticorrelations between {\mu}FA (derived
from DODE) and axon diameter in the distinct spinal cord tracts; a moderate
correlation was also observed between {\mu}FA derived from DODE and MWF. These
findings suggest that axonal membranes strongly modulate {\mu}FA, which - owing
to its robustness towards orientation dispersion effects - reflects axon
diameter much better than its typical FA counterpart. The {\mu}FA exhibited
modulations when measured via oscillating or blocked gradients, suggesting
selective probing of different parallel path lengths and providing insight into
how those modulate {\mu}FA metrics. Our findings thus shed light into the
underlying microstructural correlates of {\mu}FA and are (...
The Effect of the Intracervical Application of Follicle-Stimulating Hormone or Luteinizing Hormone on the Pattern of Expression of Gonadotrophin Receptors in the Cervix of Non-Pregnant Ewes
Effects of nongaussian diffusion on "isotropic diffusion measurements'': an ex-vivo microimaging and simulation study
Designing novel diffusion-weighted pulse sequences to probe tissue
microstructure beyond the conventional Stejskal-Tanner family is currently of
broad interest. One such technique, multidimensional diffusion MRI, has been
recently proposed to afford model-free decomposition of diffusion signal
kurtosis into terms originating from either ensemble variance of isotropic
diffusivity or microscopic diffusion anisotropy. This ability rests on the
assumption that diffusion can be described as a sum of multiple Gaussian
compartments, but this is often not strictly fulfilled. The effects of
nongaussian diffusion on single shot isotropic diffusion sequences were first
considered in detail by de Swiet and Mitra in 1996. They showed theoretically
that anisotropic compartments lead to anisotropic time dependence of the
diffusion tensors, which causes the measured isotropic diffusivity to depend on
gradient frame orientation. Here we show how such deviations from the multiple
Gaussian compartments assumption conflates orientation dispersion with ensemble
variance in isotropic diffusivity. Second, we consider additional contributions
to the apparent variance in isotropic diffusivity arising due to
intracompartmental kurtosis. These will likewise depend on gradient frame
orientation. We illustrate the potential importance of these confounds with
analytical expressions, numerical simulations in simple model geometries, and
microimaging experiments in fixed spinal cord using isotropic diffusion
encoding waveforms with 7.5 ms duration and 3000 mT/m maximum amplitude.Comment: 26 pages, 9 figures. Appearing in J. Magn. Reso
- …
