26 research outputs found

    Microarray analysis of replicative senescence

    Get PDF
    AbstractBackground: Limited replicative capacity is a defining characteristic of most normal human cells and culminates in senescence, an arrested state in which cells remain viable but display an altered pattern of gene and protein expression. To survey widely the alterations in gene expression, we have developed a DNA microarray analysis system that contains genes previously reported to be involved in aging, as well as those involved in many of the major biochemical signaling pathways.Results: Senescence-associated gene expression was assessed in three cell types: dermal fibroblasts, retinal pigment epithelial cells, and vascular endothelial cells. Fibroblasts demonstrated a strong inflammatory-type response, but shared limited overlap in senescent gene expression patterns with the other two cell types. The characteristics of the senescence response were highly cell-type specific. A comparison of early- and late-passage cells stimulated with serum showed specific deficits in the early and mid G1 response of senescent cells. Several genes that are constitutively overexpressed in senescent fibroblasts are regulated during the cell cycle in early-passage cells, suggesting that senescent cells are locked in an activated state that mimics the early remodeling phase of wound repair.Conclusions: Replicative senescence triggers mRNA expression patterns that vary widely and cell lineage strongly influences these patterns. In fibroblasts, the senescent state mimics inflammatory wound repair processes and, as such, senescent cells may contribute to chronic wound pathologies

    Dioxin Exposure Blocks Lactation Through a Direct Effect on Mammary Epithelial Cells Mediated by the Aryl Hydrocarbon Receptor Repressor

    Get PDF
    In mammals, lactation is a rich source of nutrients and antibodies for newborn animals. However, millions of mothers each year experience an inability to breastfeed. Exposure to several environmental toxicants, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has been strongly implicated in impaired mammary differentiation and lactation. TCDD and related polyhalogenated aromatic hydrocarbons are widespread industrial pollutants that activate the aryl hydrocarbon receptor (AHR). Despite many epidemiological and animal studies, the molecular mechanism through which AHR signaling blocks lactation remains unclear. We employed in vitro models of mammary differentiation to recapitulate lactogenesis in the presence of toxicants. We demonstrate AHR agonists directly block milk production in isolated mammary epithelial cells. Moreover, we define a novel role for the aryl hydrocarbon receptor repressor (AHRR) in mediating this response. Our mechanistic studies suggest AHRR is sufficient to block transcription of the milk gene β-casein. Since TCDD is a prevalent environmental pollutant that affects women worldwide, our results have important public health implications for newborn nutrition

    Wnt/ß-catenin/Lef-1 signaling in the uterus and its implications in uterine gland formation and cancer development

    No full text
    Wnt/b-catenin signaling appears to be important in a multitude of cancers. This review article details current knowledge of the Wnt/b-catenin/Lef1 pathway in generalized gland regulation and formation in addition to endometrial cancer. Wnt signaling is critical for the development of the female urogenital system, in particular mullerian duct formation. Dysregulation of this signaling pathway at multiple nodes has been observed in numerous tumor types, including endometrial cancer. In particular, nuclear accumulation of b-catenin correlates with tumor severity. As such, therapeutic modulation of Wnt signaling represents an emerging avenue for the treatment of cancers that rely on this pathway

    Identification and cloning of a sequence homologue of dopamine β-hydroxylase

    Get PDF
    We have identified and cloned a cDNA encoding a new member of the monooxygenase family of enzymes. This novel enzyme, which we call MOX (monooxygenase X; unknown substrate) is a clear sequence homologue of the enzyme dopamine β-hydroxylase (DBH). MOX maintains many of the structural features of DBH, as evidenced by the retention of most of the disulfide linkages and all of the peptidyl ligands to the active site copper atoms. Unlike DBH, MOX lacks a signal peptide sequence and therefore is unlikely to be a secreted molecule. The steady-state mRNA levels of MOX are highest in the kidney, lung, and adrenal gland, indicating that the tissue distribution of MOX is broader than that of DBH. Antisera raised to a fusion protein of MOX identifies a single band of the expected mobility by Western blot analysis. MOX mRNA levels are elevated in some fibroblast cell strains at replicative senescence, through this regulation is not apparent in all primary cell strains. The gene for MOX resides on the q arm of chromosome 6 and the corresponding mouse homolog has been identified.

    The role of LEF1 in endometrial gland formation and carcinogenesis.

    Get PDF
    Endometrial carcinoma is the most common gynecologic cancer, yet the mechanisms underlying this disease process are poorly understood. We hypothesized that Lef1 is required for endometrial gland formation within the uterus and is overexpressed in endometrial cancer. Using Lef1 knockout (KO) mice, we compared uterine gland development to wild-type (WT) controls, with respect to both morphology and expression of the Lef1 targets, cyclin D1 and MMP7. We characterized the dynamics of Lef1 protein expression during gland development and the mouse estrus cycle, by immunostaining and Western blot. Finally, we investigated the roles of cyclin D1 and MMP7 in gland and cancer formation in the mouse, and assessed the relevance of Lef1 to human cancer by comparing expression levels in cancerous and normal endometrial tissues. Lef1 upregulation in mouse endometrium correlates with the proliferative stages of the estrus cycle and gland development during the neonatal period. WT mice endometrial glands began to develop by day 5 and were easily identified by day 9, whereas Lef1 KO mice endometrial glands had not developed by day 9 although the endometrial lining was intact. We found that during gland development cyclin D1 is elevated and localized to the gland buds, and that this requires the presence of Lef1. We also noted that Lef1 protein was expressed at higher levels in endometrial cancers within mice and humans when compared to normal endometrium. Our loss-of-function data indicate that Lef1 is required for the formation of endometrial glands in the mouse uterus. Lef1 protein elevation corresponds to gland formation during development, and varies cyclically with the mouse estrus cycle, in parallel with gland regeneration. Finally, Lef1 is overexpressed in human and mouse endometrial tumors, consistent with it playing a role in gland proliferation
    corecore