2,941 research outputs found

    Effects of an external magnetic field on the gaps and quantum corrections in an ordered Heisenberg antiferromagnet with Dzyaloshinskii-Moriya anisotropy

    Full text link
    We study the effects of external magnetic field on the properties of an ordered Heisenberg antiferromagnet with the Dzyaloshinskii-Moriya (DM) interaction. Using the spin-wave theory quantum correction to the energy, on-site magnetization, and uniform magnetization are calculated as a function of the field H and the DM anisotropy constant D. It is shown that the spin-wave excitations exhibit an unusual field-evolution of the gaps. This leads to various non-analytic dependencies of the quantum corrections on H and D. It is also demonstrated that, quite generally, the DM interaction suppresses quantum fluctuations, thus driving the system to a more classical ground state. Most of the discussion is devoted to the spin-S, two-dimensional square lattice antiferromagnet, whose S=1/2 case is closely realized in K2V3O8 where at H=0 the DM anisotropy is hidden by the easy-axis anisotropy but is revealed in a finite field. The theoretical results for the field-dependence of the spin-excitation gaps in this material are presented and the implications for other systems are discussed.Comment: 15+ pages, 14 Figure

    High pressure operation of the triple-GEM detector in pure Ne, Ar and Xe

    Get PDF
    We study the performance of the triple-GEM (Gas Electron Multiplier) detector in pure noble gases Ne, Ar and Xe, at different pressures varying from 1 to 10 atm. In Ar and Xe, the maximum attainable gain of the detector abruptly drops down for pressures exceeding 3 atm. In contrast, the maximum gain in Ne was found to increase with pressure, reaching a value of 100,000 at 7 atm. The results obtained are of particular interest for developing noble gas-based cryogenic particle detectors for solar neutrino and dark matter search.Comment: 7 pages, 4 figures. Submitted to Nucl. Instr. and Meth. A as a letter to the Edito

    Measurement of the ionization yield of nuclear recoils in liquid argon at 80 and 233 keV

    Full text link
    The energy calibration of nuclear recoil detectors is of primary importance to rare-event experiments such as those of direct dark matter search and coherent neutrino-nucleus scattering. In particular, such a calibration is performed by measuring the ionization yield of nuclear recoils in liquid Ar and Xe detection media, using neutron elastic scattering off nuclei. In the present work, the ionization yield for nuclear recoils in liquid Ar has for the first time been measured in the higher energy range, at 80 and 233 keV, using a two-phase Cryogenic Avalanche Detector (CRAD) and DD neutron generator. The ionization yield in liquid Ar at an electric field of 2.3 kV/cm amounted to 7.8+/-1.1 and 9.7+/-1.3 e-/keV at 80 and 233 keV respectively. The Jaffe model for nuclear recoil-induced ionization, in contrast to that Thomas-Imel, can probably consistently describe the energy dependence of the ionization yield.Comment: 6 pages, 6 figures. Fig. 6 changed. Submitted to EP
    • …
    corecore