6 research outputs found

    Laccase: Microbial Sources, Production, Purification, and Potential Biotechnological Applications

    Get PDF
    Laccase belongs to the blue multicopper oxidases and participates in cross-linking of monomers, degradation of polymers, and ring cleavage of aromatic compounds. It is widely distributed in higher plants and fungi. It is present in Ascomycetes, Deuteromycetes and Basidiomycetes and abundant in lignin-degrading white-rot fungi. It is also used in the synthesis of organic substance, where typical substrates are amines and phenols, the reaction products are dimers and oligomers derived from the coupling of reactive radical intermediates. In the recent years, these enzymes have gained application in the field of textile, pulp and paper, and food industry. Recently, it is also used in the design of biosensors, biofuel cells, as a medical diagnostics tool and bioremediation agent to clean up herbicides, pesticides and certain explosives in soil. Laccases have received attention of researchers in the last few decades due to their ability to oxidize both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants. It has been identified as the principal enzyme associated with cuticular hardening in insects. Two main forms have been found: laccase-1 and laccase-2. This paper reviews the occurrence, mode of action, general properties, production, applications, and immobilization of laccases within different industrial fields

    Adsorption of Patent Blue V from Textile Industry Wastewater Using Sterculia alata Fruit Shell Biochar: Evaluation of Efficiency and Mechanisms

    No full text
    Biochar prepared from Sterculia alata fruit shell showed a better performance for dye removal than the biomass from Sterculia alata fruit shell. The important process parameters—namely the pH, the amount of biochar, the initial dye concentration and the contact time—were optimized in order to maximize dye removal using biochar of Sterculia alata fruit shell as the bio-sorbent. The results from this study showed that the maximum adsorption of dye on the biochar was obtained at a biochar dosage of 40 g/L, at a contact time of 5 h, and an initial dye concentration of 500 mg/L (pH 2.0; temperature 30 ± 5 °C). The increase in the rate adsorption with temperature and the scanning electron microscopic (SEM) images indicated the possibility of multilayer type adsorption which was confirmed by better fit of the Freundlich adsorption isotherm with the experimental data as compared to the Langmuir isotherm. The values n and R2 in the Freundlich isotherm were found to be 4.55 and 0.97, respectively. The maximum adsorption capacity was found to be 11.36 mg/g. The value of n > 1 indicated physical nature of the adsorption process. The first and second order kinetics were tested, and it was observed that the adsorption process followed the first-order kinetics (R2 = 0.911)

    Biodegradation of methylene blue dye in a batch and continuous mode using biochar as packing media

    No full text
    Bacterial species for metabolizing dye molecules were isolated from dye rich water bodies. The best microbial species for such an application was selected amongst the isolated bacterial populations by conducting methylene blue (MB) batch degradation studies with the bacterial strains using NaCl-yeast as a nutrient medium. The most suitable bacterial species was Alcaligenes faecalis (A. faecalis) according to 16S rDNA sequencing. Process parameters were optimized and under the optimum conditions (e.g., inoculum size of 3 mL, temperature of 30 °C, 150 ppm, and time of 5 days), 96.2% of MB was removed. Furthermore, the effectiveness for the separation of MB combining bio-film with biochar was measured by a bio-sorption method in a packed bed bioreactor (PBBR) in which microbes was immobilized. The maximum MB removal efficiencies, when tested with 50 ppm dye using batch reactors containing free A. faecalis cells and the same cells immobilized on the biochar surface, were found to be 81.5% and 89.1%, respectively. The PBBR operated in continuous recycle mode at high dye concentration of 500 ppm provided 87.0% removal of MB through second-order kinetics over 10 days. The % removal was found in the order of PBBR>Immobilized batch>Free cell. The standalone biochar batch adsorption of MB can be described well by the pseudo-second order kinetics (R2 ≥0.978), indicating the major contribution of electron exchange-based valence forces in the sorption of MB onto the biochar surface. The Langmuir isotherm suggested a maximum monolayer adsorption capacity of 4.69 mg g−1 at 40 °C which was very close to experimentally calculated value (4.97 mg g−1). Moreover, the Casuarina seed biochar was reusable 5 times
    corecore