9 research outputs found

    Accuracy and cost-effectiveness of dynamic contrast-enhanced CT in the characterisation of solitary pulmonary nodules — the SPUtNIk study

    Get PDF
    Introduction:\textbf{Introduction:} Solitary pulmonary nodules (SPNs) are common on CT. The most cost-effective investigation algorithm is still to be determined. Dynamic contrastenhanced CT (DCE-CT) is an established diagnostic test not widely available in the UK currently. Methods and analysis:\textbf{Methods and analysis:} The SPUtNIk study will assess the diagnostic accuracy, clinical utility and cost-effectiveness of DCE-CT, alongside the current CT and 18-flurodeoxyglucose-positron emission tomography) (18^{18}FDG-PET)-CT nodule characterisation strategies in the National Health Service (NHS). Image acquisition and data analysis for 18^{18}FDG-PET-CT and DCE-CT will follow a standardised protocol with central review of 10% to ensure quality assurance. Decision analytic modelling will assess the likely costs and health outcomes resulting from incorporation of DCE-CT into management strategies for patients with SPNs. Ethics and dissemination:\textbf{Ethics and dissemination:} Approval has been granted by the South West Research Ethics Committee. Ethics reference number 12/SW/0206. The results of the trial will be presented at national and international meetings and published in an Health Technology Assessment (HTA) Monograph and in peer-reviewed journals.The trial is funded by the National Institute for Health Research HTA Programme (grant no: 09/22/117) and is being run by Southampton Clinical Trials Unit, directed by Professor Gareth Griffiths and part funded by Cancer Research UK. NRQ and RCR are part funded by the Cambridge Biomedical Research Centre and the Cancer Research Network: Eastern

    Software message terminology

    No full text

    Radiation dose from volumetric helical perfusion CT of the thorax, abdomen or pelvis

    No full text
    To evaluate the radiation doses delivered during volumetric helical perfusion CT of the thorax, abdomen or pelvis.The dose-length product (DLP) and CT dose index (CTDIvol) were recorded and effective dose (E) determined for patients undergoing CT (4D adaptive spiral) for tumour evaluation. Image noise and contrast to noise (CNR) at peak enhancement were also assessed for quality.Forty two consecutive examinations were included: thorax (16), abdomen (10), pelvis (16). Z-axis coverage ranged from 11.4 to 15.7 cm. Mean DLP was 1288.8 mGy.cm (range: 648 to 2456 mGy.cm). Mean CTDIvol was 96.2 mGy (range: 32.3 to 169.4 mGy). Mean effective dose was 19.6 mSv (range: 12.3 mSv to 36.7 mSv). In comparison mean DLP and effective dose was 885.2 mGy.cm (range: 504 to 1633 mGy.cm) and 13.3 mSV (range: 7.8 to 24.5 mSv) respectively for the standard staging CT thorax, abdomen and pelvis. Mean tumour CNR at peak enhancement was 1.87.The radiation dose imposed by perfusion CT was on average 1.5 times that of a CT thorax, abdomen and pelvis. The dose is not insubstantial, and must be balanced by the potential clinical utility of additional physiologic data. Further efforts towards dose reduction should be encouraged
    corecore