145 research outputs found

    Autocrine Netrin Function Inhibits Glioma Cell Motility and Promotes Focal Adhesion Formation

    Get PDF
    Deregulation of mechanisms that control cell motility plays a key role in tumor progression by promoting tumor cell dissemination. Secreted netrins and their receptors, Deleted in Colorectal Cancer (DCC), neogenin, and the UNC5 homologues, regulate cell and axon migration, cell adhesion, and tissue morphogenesis. Netrin and netrin receptor expression have previously been shown to be disrupted in invasive tumors, including glioblastoma. We determined that the human glioblastoma cell lines U87, U343, and U373 all express neogenin, UNC5 homologues, and netrin-1 or netrin-3, but only U87 cells express DCC. Using transfilter migration assays, we demonstrate DCC-dependent chemoattractant migration of U87 cells up a gradient of netrin-1. In contrast, U343 and U373 cells, which do not express DCC, were neither attracted nor repelled. Ectopic expression of DCC by U343 and U373 cells resulted in these cells becoming competent to respond to a gradient of netrin-1 as a chemoattractant, and also slowed their rate of spontaneous migration. Here, in addition to netrins' well-characterized chemotropic activity, we demonstrate an autocrine function for netrin-1 and netrin-3 in U87 and U373 cells that slows migration. We provide evidence that netrins promote the maturation of focal complexes, structures associated with cell movement, into focal adhesions. Consistent with this, netrin, DCC, and UNC5 homologues were associated with focal adhesions, but not focal complexes. Disrupting netrin or DCC function did not alter cell proliferation or survival. Our findings provide evidence that DCC can slow cell migration, and that neogenin and UNC5 homologues are not sufficient to substitute for DCC function in these cells. Furthermore, we identify a role for netrins as autocrine inhibitors of cell motility that promote focal adhesion formation. These findings suggest that disruption of netrin signalling may disable a mechanism that normally restrains inappropriate cell migration

    Photoemission study and band alignment of GaN passivation layers on GaInP heterointerface

    Full text link
    III-V semiconductor-based photoelectrochemical (PEC) devices show the highest solar-to-electricity or solar-to-fuel conversion efficiencies. GaInP is a relevant top photoabsorber layer or a charge-selective contact in PEC for integrated and direct solar fuel production, due to its tunable lattice constant, electronic band structure, and favorable optical properties. To enhance the stability of its surface against chemical corrosion which leads to decomposition, we deposit a GaN protection and passivation layer. The n-doped GaInP(100) epitaxial layers were grown by metalorganic chemical vapor deposition on top of GaAs(100) substrate. Subsequently, thin 1-20 nm GaN films were grown on top of the oxidized GaInP surfaces by atomic layer deposition. We studied the band alignment of these multi-junction heterostructures by X-ray and ultraviolet photoelectron spectroscopy. Due to the limited emission depth of photoelectrons, we determined the band alignment by a series of separate measurements in which we either modified the GaInP(100) surface termination or the film thickness of the grown GaN on GaInP(100) buffer layers. On n-GaInP(100) surfaces prepared with the well-known phosphorus-rich (2x2)/c(4x2) reconstruction we found up-ward surface band bending (BB) of 0.34 eV, and Fermi level pinning due to the present surface states. Upon oxidation, the surface states are partially passivated resulting in a reduction of BB to 0.12 eV and a valence band offset (VBO) between GaInP and oxide bands of 2.0 eV. Between the GaInP(100) buffer layer and the GaN passivation layer, we identified a VBO of 1.8 eV. The corresponding conduction band offset of -0.2 eV is found to be rather small. Therefore, we evaluate the application of the GaN passivation layer as a promising technological step not only to reduce surface states but also to increase the stability of the surfaces of photoelectrochemical devices

    The Heterogeneous Pathogenesis of Selective Immunoglobulin A Deficiency

    Get PDF
    Selective immunoglobulin A deficiency (SIgAD) is the most prevalent type of primary immunodeficiency disorder. The phenotypic feature of SIgAD is related to a defect in B lymphocyte differentiation into plasma cell-producing immunoglobulin A (IgA). In this review, we summarize the recent advances in this regard. Genetic (including major histocompatibility complex MHC and non-MHC genes), immunologic (including B and T lymphocyte subsets abnormality), cytokines/chemokines and their related receptors, apoptosis and microbiota defects are reviewed. The mechanisms leading to SIgAD are most likely multifactorial and it can be speculated that several pathways controlling B cells functions or regulating epigenetic of the IGHA gene encoding constant region of IgA heavy chain and long-term survival of IgA switched memory B cells and plasma cells may be defective in different SIgAD patients. © 2019 S. Karger AG, Basel. Copyright: All rights reserved

    Loss of neuronal potassium/chloride cotransporter 3 (KCC3) is responsible for the degenerative phenotype in a conditional mouse model of hereditary motor and sensory neuropathy associated with agenesis of the corpus callosum

    Get PDF
    Disruption of the potassium/chloride cotransporter 3 (KCC3), encoded by the SLC12A6 gene, causes hereditary motor and sensory neuropathy associated with agenesis of the corpus callosum (HMSN/ACC), a neurodevelopmental and neurodegenerative disorder affecting both the peripheral nervous system and CNS. However, the precise role of KCC3 in the maintenance of ion homeostasis in the nervous system and the pathogenic mechanisms leading to HMSN/ACC remain unclear. We established two Slc12a6 Cre/LoxP transgenic mouse lines expressing C-terminal truncated KCC3 in either a neuron-specific or ubiquitous fashion. Our results suggest that neuronal KCC3 expression is crucial for axon volume control. We also demonstrate that the neuropathic features of HMSN/ACC are predominantly due to a neuronal KCC3 deficit, while the auditory impairment is due to loss of non-neuronal KCC3 expression. Furthermore, we demonstrate that KCC3 plays an essential role in inflammatory pain pathways. Finally, we observed hypoplasia of the corpus callosum in both mouse mutants and a marked decrease in axonal tracts serving the auditory cortex in only the general deletion mutant. Together, these results establish KCC3 as an important player in both central and peripheral nervous system maintenance

    Frequency of CD4+ and CD8+ T cells in Iranian chronic rhinosinusitis patients

    Get PDF
    Background: Chronic Rhinosinusitis (CRS) is a persistent inflammatory disease affecting paranasal sinuses. CRS is categorized into two distinct subgroups defined as CRS with nasal polyps (CRSwNP) and CRS without nasal polyps (CRSsNP). Although several immune cells are involved in the CRS pathogenesis, the role of T cells is not fully understood. The objective of the present study was to evaluate the frequency of CD4+ and CD8+ T cells and macrophages in the sinonasal mucosa of CRS patients, as well as to investigate the specific transcription factors for Th1, Th2, Th17, and Treg cells. Methods: In this study, 15 healthy controls, 12 CRSsNP, and 23 CRSwNP patients participated. CD4+, CD8+, and CD68+ cells were investigated in the sinonasal tissues using immunohistochemistry. The expression of transcription factors related to Th subsets (T-bet, GATA3, Ror-γt, and FoxP3) was evaluated using real-time PCR. Furthermore, CRSwNP patients were defined as eosinophilic when eosinophils consisted of more than 10 of total inflammatory cells. The Kruskal-Wallis, Mann-Whitney, and Spearman tests were used in statistical analyses. Results: The median (range) age of the studied groups was: 32 (14-67) for CRSwNP, 28 (10-43) for CRSsNP, and 27 (17-44) for controls. The number of eosinophils in CRSwNP patients was higher than two other groups, whereas neutrophils were elevated in both CRSwNP and CRSsNP groups in comparison to controls. The frequency of CD4+ and CD8+ T cells, macrophages, and total inflammatory cells were significantly increased in CRSwNP and CRSsNP patients compared with controls. The mRNA expression of GATA3 was increased in CRSwNP patients while mRNA expression of Ror-γt was elevated in CRSsNP patients. No significant difference was observed in T-bet mRNA expression among three groups. Both CRSwNP and CRSsNP patients showed decreased FoxP3 mRNA expression in comparison to controls. Conclusion: The frequency of CD4+ and CD8+ T cells was elevated in CRS patients. In addition, we demonstrated Th2 dominance in CRSwNP patients and Th17 dominance in CRSsNP patients, implicating different mechanisms may underlie the disease. Better CRS classification and targeted therapeutic strategies may be achievable by determining the pattern of infiltrating inflammatory cells. Therefore, further experimental investigations on T cells are needed. © 2018 The Author(s)

    Evaluation of TAK-242 (Resatorvid) effects on inflammatory status of fibroblast-like synoviocytes in rheumatoid arthritis and trauma patients

    Get PDF
    Fibroblast-like synoviocytes (FLSs) produce lots of inflammatory molecules that trigger immune responses and intensification the inflammation and thereby play important roles in Rheumatoid Arthritis)RA(pathogenesis. Due to the important roles of toll-like receptor 4 (TLR4) in cytokine production and inflammation, we aimed to evaluate the effects of TAK-242 (Resatorvid) on interleukin (IL)1-β, IL-6, TNF-α, and TLR4 expression and two important proteins of nuclear factor-κB (NF-κB) signaling pathway (Ikβα and pIkβα) in RA and trauma FLSs. FLSs were isolated from synovial tissues of trauma (n=10) and RA (n=10) patients and cultured in Dulbecco's Modified Eagle Medium (DMEM). 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) was performed to evaluate the cytotoxicity effects of TAK-242 on the RA FLSs. Real-time PCR was performed to measure the expression level of IL1-β, IL-6, TNF-α, and TLR4 genes in Lipopolysaccharide (LPS) and TAK-242 treated FLSs. Furthermore, the treated FLSs were evaluated for protein levels of Ikβα and pIkβα by western blot. The baseline expression of IL1-β, IL-6, TNF-α, and TLR4 showed no significant differences between healthy and RA FLSs. LPS stimulated FLSs significantly increased mRNA levels of IL-1β, IL-6, TNF-α, and TLR4 genes in both the healthy and RA FLSs compared with that of their control groups, and pretreatment with TAK-242 reversed the effect. Furthermore, LPS-stimulated FLSs significantly increased the level of pIkβα in both the healthy and RA FLSs compared with that of their control groups, and pretreatment with TAK-242 reversed the effect. We provide the data that TAK-242 through inhibiting the NF-κB signaling pathway may modulate TLR4-mediated inflammatory responses and could be considered as a potential therapeutic agent for RA patients. Copyright © 2021 Karami et al

    Negative life events and suicide risk in college students: Conditional indirect effects of hopelessness and self-compassion

    Get PDF
    Objective: Suicide risk is a significant public health concern for college students and may be exacerbated by hopelessness resulting from negative life events (NLE), yet may be ameliorated by self-compassion. We examined the mediating role of hopelessness in the relation between NLE and suicidal behavior, and the moderating influence of self-compassion on all model paths. Participants: Participants were 338 undergraduates (89% white; 67% female). Data were collected from December 2014 to December 2015. Methods: Participants completed the Life Events Checklist for College Students, Beck Hopelessness Inventory, Self-Compassion Scale, and Suicidal Behaviors Questionnaire – Revised. Results: Negative life events were related to greater hopelessness and, in turn, to more suicidal behavior, yet self-compassion attenuated this effect. Conclusions: Self-compassion may buffer the NLE–hopelessness linkage, thereby reducing suicide risk among college students. Therapeutic promotion of self-compassion, and reduction of hopelessness, may be important suicide prevention strategies on college campuses

    Genes for hereditary sensory and autonomic neuropathies: a genotype–phenotype correlation

    Get PDF
    Hereditary sensory and autonomic neuropathies (HSAN) are clinically and genetically heterogeneous disorders characterized by axonal atrophy and degeneration, exclusively or predominantly affecting the sensory and autonomic neurons. So far, disease-associated mutations have been identified in seven genes: two genes for autosomal dominant (SPTLC1 and RAB7) and five genes for autosomal recessive forms of HSAN (WNK1/HSN2, NTRK1, NGFB, CCT5 and IKBKAP). We performed a systematic mutation screening of the coding sequences of six of these genes on a cohort of 100 familial and isolated patients diagnosed with HSAN. In addition, we screened the functional candidate gene NGFR (p75/NTR) encoding the nerve growth factor receptor. We identified disease-causing mutations in SPTLC1, RAB7, WNK1/HSN2 and NTRK1 in 19 patients, of which three mutations have not previously been reported. The phenotypes associated with mutations in NTRK1 and WNK1/HSN2 typically consisted of congenital insensitivity to pain and anhidrosis, and early-onset ulcero-mutilating sensory neuropathy, respectively. RAB7 mutations were only found in patients with a Charcot-Marie-Tooth type 2B (CMT2B) phenotype, an axonal sensory-motor neuropathy with pronounced ulcero-mutilations. In SPTLC1, we detected a novel mutation (S331F) corresponding to a previously unknown severe and early-onset HSAN phenotype. No mutations were found in NGFB, CCT5 and NGFR. Overall disease-associated mutations were found in 19% of the studied patient group, suggesting that additional genes are associated with HSAN. Our genotype–phenotype correlation study broadens the spectrum of HSAN and provides additional insights for molecular and clinical diagnosis

    The Rac GTP Exchange Factor TIAM-1 Acts with CDC-42 and the Guidance Receptor UNC-40/DCC in Neuronal Protrusion and Axon Guidance

    Get PDF
    The mechanisms linking guidance receptors to cytoskeletal dynamics in the growth cone during axon extension remain mysterious. The Rho-family GTPases Rac and CDC-42 are key regulators of growth cone lamellipodia and filopodia formation, yet little is understood about how these molecules interact in growth cone outgrowth or how the activities of these molecules are regulated in distinct contexts. UNC-73/Trio is a well-characterized Rac GTP exchange factor in Caenorhabditis elegans axon pathfinding, yet UNC-73 does not control CED-10/Rac downstream of UNC-6/Netrin in attractive axon guidance. Here we show that C. elegans TIAM-1 is a Rac-specific GEF that links CDC-42 and Rac signaling in lamellipodia and filopodia formation downstream of UNC-40/DCC. We also show that TIAM-1 acts with UNC-40/DCC in axon guidance. Our results indicate that a CDC-42/TIAM-1/Rac GTPase signaling pathway drives lamellipodia and filopodia formation downstream of the UNC-40/DCC guidance receptor, a novel set of interactions between these molecules. Furthermore, we show that TIAM-1 acts with UNC-40/DCC in axon guidance, suggesting that TIAM-1 might regulate growth cone protrusion via Rac GTPases in response to UNC-40/DCC. Our results also suggest that Rac GTPase activity is controlled by different GEFs in distinct axon guidance contexts, explaining how Rac GTPases can specifically control multiple cellular functions

    Can hippocampal neurites and growth cones climb over obstacles?

    Get PDF
    Guidance molecules, such as Sema3A or Netrin-1, can induce growth cone (GC) repulsion or attraction in the presence of a flat surface, but very little is known of the action of guidance molecules in the presence of obstacles. Therefore we combined chemical and mechanical cues by applying a steady Netrin-1 stream to the GCs of dissociated hippocampal neurons plated on polydimethylsiloxane (PDMS) surfaces patterned with lines 2 \ub5m wide, with 4 \ub5m period and with a height varying from 100 to 600 nm. GC turning experiments performed 24 hours after plating showed that filopodia crawl over these lines within minutes. These filopodia do not show staining for the adhesion marker Paxillin. GCs and neurites crawl over lines 100 nm high, but less frequently and on a longer time scale over lines higher than 300 nm; neurites never crawl over lines 600 nm high. When neurons are grown for 3 days over patterned surfaces, also neurites can cross lines 300 nm and 600 nm high, grow parallel to and on top of these lines and express Paxillin. Axons - selectively stained with SMI 312 - do not differ from dendrites in their ability to cross these lines. Our results show that highly motile structures such as filopodia climb over high obstacle in response to chemical cues, but larger neuronal structures are less prompt and require hours or days to climb similar obstacles
    corecore